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This is Chapter 6 of a manuscript entitled as Modern Time Series Analysis: Theory

and Applications written by the author. We will introduce some popular nonparametric

methods, particularly the kernel smoothing method and the local polynomial smoothing

method, to estimate functions of interest in time series contexts, such as probability

density functions, autoregression functions, spectral density functions, and generalized

spectral density functions. Empirical applications of these functions crucially depend on

the consistent estimation of these functions. We will discuss the large sample statistical

properties of nonparametric estimators in various contexts.
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mean squared error, law of large numbers, local polynomial smoothing, local smoothing,
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1 Motivation

Suppose {Xt} is a strictly stationary process with marginal probability density func-
tion g(x) and pairwise joint probability density function fj(x, y), and a random sample

{Xt}Tt=1 of size T is observed. Then,

• How to estimate the marginal pdf g(x) of {Xt}?

• How to estimate the pairwise joint pdf fj(x, y) of (Xt, Xt−j)?

• How to estimate the autoregression function rj(x) = E(Xt|Xt−j = x)?

• How to estimate the spectral density h(ω) of {Xt}?

• How to estimate the generalized spectral density f(ω, u, v) of {Xt}?

• How to estimate the bispectral density b(ω1, ω2)?

• How to estimate a nonlinear autoregressive conditional heteroskedastic model

Xt = µ(Xt−1, ..., Xt−p) + σ(Xt−1, ..., Xt−q)εt, {εt} ∼ i.i.d.(0, 1),

where µ(·) and σ(·) are unknown functions of the past information. Under certain
regularity conditions, µ(·) is the conditional mean ofXt given It−1 = {Xt−1, Xt−2, ...}
and σ2(·) is the conditional variance of Xt given It−1.

• How to estimate a semi-nonparametric functional coeffi cient autoregressive process

Xt =

p∑
j=1

αj(Xt−d)Xt−j + εt, E(εt|It−1) = 0 a.s.,

where αj(·) is unknown, and d > 0 is a time lag parameter?

• How to estimate a nonparametric additive autoregressive process

Xt =

p∑
j=1

µj(Xt−j) + εt, E(εt|It−1) = 0 a.s.,

where the µj(·) functions are unknown?

• How to estimate a locally linear time-varying regression model

Yt = X ′tβ(t/T ) + εt,

where β(·) is an unknown smooth deterministic function of time?
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• How to use these estimators in economic and financial applications?

Nonparametric estimation is often called nonparametric smoothing, since a key

parameter called smoothing parameter is used to control the degree of the estimated

curve. Nonparametric smoothing first arose from spectral density estimation in time

series analysis. In a discussion of the seminal paper by Bartlett (1946), Henry Daniels

suggested that a possible improvement on spectral density estimation could be made

by smoothing the periodogram (see Chapter 3), which is the squared discrete Fourier

transform of the random sample {Xt}Tt=1. The theory and techniques were then system-
atically developed by Bartlett (1948,1950). Thus, smoothing techniques were already

prominently featured in time series analysis more than 70 years ago.

In the earlier stage of nonlinear time series analysis (see Tong (1990)), the focus was

on various nonlinear parametric forms, such as threshold autoregressive models, smooth

transition autoregressive models, and Regime-switch Markov chain autoregressive mod-

els (see Chapter 8 for details). Recent interest has been mainly in nonparametric curve

estimation, which does not require the knowledge of the functional form beyond certain

smoothness conditions on the underlying function of interest.

Question: Why is nonparametric smoothing popular in statistics and econometrics?

There are several reasons for the popularity of nonparametric analysis. In particular,

three main reasons are:

• Demands for nonlinear approaches;

• Availability of large data sets;

• Advance in computer technology.

Indeed, as Granger (1999) points out, the speed in computing technology increases

much faster than the speed at which data grows.

To obtain basic ideas about nonparametric smoothing methods, we now consider two

examples, one is the estimation of a regression function, and the other is the estimation

of a probability density function.
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Example 1 [Regression Function]: Consider the first order autoregression function

r1(x) = E(Xt|Xt−1 = x).

We can write

Xt = r1(Xt−1) + εt,

where E(εt|Xt−1) = 0 by construction. We assume E(X2
t ) <∞.

Suppose a sequence of bases {ψj(x)} constitutes a complete orthonormal basis for
the space of square-integrable functions. Then we can always decompose the function

r1(x) =
∞∑
j=0

αjψj(x),

where the Fourier coeffi cient

αj =

∫ ∞
−∞

r1(x)ψj(x)dx,

which is the projection of r1(x) on the base ψj(x).

Suppose there is a quadratic function r1(x) = x2 for x ∈ [−π, π]. Then

r1(x) =
π2

3
− 4

(
cos(x)− cos(2x)

22
+

cos(3x)

32
− · · ·

)
=

π2

3
− 4

∞∑
j=1

(−1)j−1
cos(jx)

j2
.

For another example, suppose the regression function is a step function, namely

r1(x) =


−1 if − π < x < 0,

0 if x = 0,

1 if 0 < x < π.

Then we can still expand it as an infinite sum of periodic series,

r1(x) =
4

π

[
sin(x) +

sin(3x)

3
+

sin(5x)

5
+ · · ·

]
=

4

π

∞∑
j=0

sin[(2j + 1)x]

(2j + 1)
.
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In general, we do not assume that the function form of r1(x) is known, except that we

still maintain the assumption that r1(x) is a square-integrable function. Because r1(x)

is square-integrable, we have∫ ∞
−∞

r21(x)dx =
∞∑
j=0

∞∑
k=0

αjαk

∫ ∞
−∞

ψj(x)ψk(x)dx

=

∞∑
j=0

∞∑
k=0

αjαkδj,k by orthonormality

=
∞∑
j=0

α2j <∞,

where δj,k is the Kronecker delta function: δj,k = 1 if j = k and 0 otherwise.

The squares summability implies αj → 0 as j →∞, that is, αj becomes less impor-
tant as the order j →∞. This suggests that a truncated sum

r1p(x) =

p∑
j=0

αjψj(x)

can be used to approximate r1(x) arbitrarily well if p is suffi ciently large. The approxi-

mation error, or the bias,

bp(x) ≡ r1(x)− r1p(x)

=
∞∑

j=p+1

αjψj(x)

→ 0

as p→∞.

However, the coeffi cient αj is unknown. To obtain a feasible estimator for r1(x), we

consider the following sequence of truncated regression models

Xt =

p∑
j=0

βjψj(Xt−1) + εpt,

where p ≡ p(T )→∞ is the number of series terms that depends on the sample size T.

We need p/T → 0 as T →∞, i.e., the number of p is much smaller than the sample size
T . Note that the regression error εpt is not the same as the true innovation εt for each

given p. Instead, it contains the true innovation εt and the bias bp(Xt−1).
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The ordinary least squares estimator

β̂ = (Ψ′Ψ)
−1

Ψ′X

=

(
T∑
t=2

ψtψ
′
t

)−1 T∑
t=2

ψtXt,

where

Ψ = (ψ′1, ..., ψ
′
T )′

is a T × p matrix, and

ψt = [ψ0(Xt−1), ψ1(Xt−1), ..., ψp(Xt−1)]
′

is a p× 1 vector. The series-based regression estimator is

r̂1p(x) =

p∑
j=0

β̂jψj(x).

To ensure that r̂1p(x) is asymptotically unbiased, we must let p = p(T )→∞ as T →∞
(e.g., p =

√
T ). However, if p is too large, the number of estimated parameters will

be too large, and as a consequence, the sampling variation of β̂ will be large (i.e., the

estimator β̂ is imprecise.) We must choose an appropriate p = P (T ) so as to balance the

bias and the sampling variation. The truncation order p is called a smoothing parameter

because it controls the smoothness of the estimated function r̂1p(x). In general, for any

given sample, a large p will give a smooth estimated curve whereas a small p will give a

wiggly estimated curve. If p is too large such that the variance of r̂1p(x) is larger than

its squared bias, we call that there exists oversmoothing. In contrast, if p is too sall such

that the variance of r̂1p(x) is smaller than its squared bias, then we call that there exists

undersmoothing. Optimal smoothing is achieved when the variance of r̂1p(x) balances its

squared bias. The series estimator r̂1p(x) is called a global smoothing method, because

once p is given, the estimated function r̂1p(x) is determined over the entire domain of

Xt.

Under suitable regularity conditions, r̂1p(x) will consistently estimate the unknown

function r1(x) as the sample size T increases. This is called nonparametric estimation

because no parametric functional form is imposed on r1(x).

The base functions {ψj(·)} can be the Fourier series (i.e., the sin and cosine func-
tions), and B-spline functions if Xt has a bounded support. See (e.g.) Andrews (1991,

Econometrica) and Hong and White (1995, Econometrica) for applications.
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Example 2 [Probability Density Function]: Suppose the PDF g(x) of Xt is a

smooth function with unbounded support. We can expand

g(x) = φ(x)
∞∑
j=0

βjHj(x),

where the function

φ(x) =
1√
2π

exp(−1

2
x2)

is the N(0, 1) density function, and {Hj(x)} is the sequence of Hermite polynomials,
defined as

(−1)j
dj

dxj
Φ(x) = −Hj−1(x)φ(x) for j > 0,

where Φ(·) is the N(0, 1) CDF. For example,

H0(x) = 1,

H1(x) = x,

H2(x) = (x2 − 1)

H3(x) = x(x2 − 3),

H4(x) = x4 − 6x2 + 3.

See, for example, Magnus, Oberhettinger and Soni (1966, Section 5.6) and Abramowitz

and Stegun (1972, Ch.22).

Here, the Fourier coeffi cient

βj =

∫ ∞
−∞

g(x)Hj(x)φ(x)dx.

Again, βj → 0 as j →∞ given
∑∞

j=0 β
2
j <∞.

The N(0, 1) PDF φ(x) is the leading term to approximate the unknown density g(x),

and the Hermite polynomial series will capture departures from normality (e.g., skewness

and heavy tails).

To estimate g(x), we can consider the sequence of truncated probability densities

gp(x) = C−1p φ(x)

p∑
j=0

βjHj(x),

where the constant

Cp =

p∑
j=0

βj

∫
Hj(x)φ(x)dx
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is a normalization factor to ensure that gp(x) is a PDF for each p. The unknown pa-

rameters {βj} can be estimated from the sample {Xt}Tt=1 via the maximum likelihood

estimation (MLE) method. For example, suppose {Xt} is an IID sample. Then

β̂ = arg max
β

T∑
t=1

ln ĝp(Xt)

To ensure that

ĝp(x) = Ĉ−1p φ(x)
∑

p
j=0β̂jHj(x)

is asymptotically unbiased, we must let p = p(T ) → ∞ as T → ∞. However, p must
grow more slowly than the sample size T grows to infinity so that the sampling variation

of β̂ will not be too large.

For the use of Hermite Polynomial series expansions, see (e.g.) Gallant and Tauchen

(1996, Econometric Theory), Aït-Sahalia (2002, Econometrica), and Cui, Hong and Li

(2020).

Question: What are the advantages of nonparametric smoothing methods?

They require few assumptions or restrictions on the data generating process. In

particular, they do not assume a specific functional form for the function of interest

(of course certain smoothness condition such as differentiability is required). They can

deliver a consistent estimator for the unknown function, no matter whether it is linear or

nonlinear. Thus, nonparametric methods can effectively reduce potential systematic bi-

ases due to model misspecification, which is more likely to be encountered for parametric

modeling.

Question: What are the disadvantages of nonparametric methods?

• Nonparametric methods require a large data set for reasonable estimation. Fur-
thermore, there exists a notorious problem of “curse of dimensionality,”when the

function of interest contains multiple explanatory variables. This will be explained

below.

• There exists another notorious “boundary effect”problem for nonparametric esti-

mation near the boundary regions of the support. This occurs due to asymmetric

coverage of data in the boundary regions.
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• Coeffi cients are usually diffi cult to interpret from an economic point of view.

• There exists a danger of potential overfitting, in the sense that nonparametric
method, due to its flexibility, tends to capture non-essential features in a data

which will not appear in out-of-sample scenarios.

The above two motivating examples are the so-called orthogonal series expansion

methods. There are other nonparametric methods, such as splines smoothing, kernel

smoothing, k-near neighbor, and local polynomial smoothing. As mentioned earlier,

series expansion methods are examples of so-called global smoothing, because the

coeffi cients are estimated using all observations, and they are then used to evaluate the

values of the underlying function over all points in the support of Xt. A nonparametric

series model is an increasing sequence of parametric models, as the sample size T grows.

In this sense, it is also called a sieve estimator. In contrast, kernel and local polynomial

methods are examples of the so-called local smoothing methods, because estimation

only requires the observations in a neighborhood of the point of interest. Below we will

mainly focus on kernel and local polynomial smoothing methods, due to their simplicity

and intuitive nature.

2 Kernel Density Method
2.1 Univariate Density Estimation

Suppose {Xt} is a strictly stationary time series process with unknown marginal PDF
g(x).

Question: How to estimate the marginal PDF g(x) of the time series process {Xt}?

We first consider a parametric approach. Assume that g(x) is an N(µ, σ2) PDF

with unknown µ and σ2. Then we know the functional form of g(x) up to two unknown

parameters θ = (µ, σ2)′ :

g(x, θ) =
1√

2πσ2
exp

[
− 1

2σ2
(x− µ)2

]
, −∞ < x <∞.
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To estimate g(x, θ), it suffi ces to estimate two unknown parameters µ and σ2. Based on

the random sample {Xt}Tt=1, we can obtain the maximum likelihood estimators (MLE),

µ̂ =
1

T

T∑
t=1

Xt,

σ̂2 =
1

T

T∑
t=1

(Xt − µ̂)2.

The approach taken here is called a parametric approach, that is, assuming that the

unknown PDF is a known functional form up to some unknown parameters. It can be

shown that the parameter estimator θ̂ converges to the unknown parameter value θ0 at

a root-T convergence rate in the sense that
√
T (θ̂− θ0) = OP (1), or θ̂− θ0 = OP (T−1/2),

where θ̂ = (µ̂, σ̂2)′, θ0 = (µ0, σ
2
0)
′, and OP (1) denotes boundedness in probability. The

root-T convergence rate is called the parametric convergence rate for θ̂ and g(x, θ̂). As

we will see below, nonparametric density estimators will have a slower convergence rate.

Question: What is the definition of OP (δT )?

Let {δT , T ≥ 1} be a sequence of positive numbers. A random variable YT is said to be
at most of order δT in probability, written YT = OP (δT ), if the sequence {YT/δT , T ≥ 1}
is tight, that is, if

lim
λ→∞

lim sup
T→∞

P (|YT/δT | > λ) = 0.

Tightness is usually indicated by writing YT/δT = OP (1).

Question: What is the advantage of the parametric approach?

By the mean-value theorem, we obtain

g(x, θ̂)− g(x) = g(x, θ0)− g(x) +
∂

∂θ
g(x, θ̄)(θ̂ − θ0)

= 0 +
1√
T

∂

∂θ
g(x, θ̄)

√
T (θ̂ − θ0)

= 0 +OP (T−1/2)

= OP (T−1/2).

Intuitively, the first term, g(x, θ0) − g(x), is the bias of the density estimator g(x, θ̂),

which is zero if the assumption of correct model specification holds. The second term,
∂
∂θ
g(x, θ̄)(θ̂−θ0), is due to the sampling error of the estimator θ̂, which is unavoidable no
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matter whether the density estimator g(x, θ̂) is correctly specified. This term converges

to zero in probability at the parametric root-T rate.

Question: What happens if the correct model specification assumption fails? That is,

what happens if g(x, θ) 6= g(x) for all θ?

When the density model g(x, θ) is not correctly specified for the unknown PDF g(x),

the estimator g(x, θ̂) will not be consistent for g(x) because the bias g(x, θ∗)−g(x) never

vanishes no matter how large the sample size T is, where θ∗ = p lim θ̂.

We now introduce a nonparametric estimation method for g(x) which will not as-

sume any restrictive functional form for g(x). Instead, it lets data speak for the correct

functional form for g(x).

2.1.1 Kernel Density Estimator

Kernel smoothing is a kind of local smoothing. The purpose of nonparametric probability

density estimation is to construct an estimate of a PDF without imposing restrictive

functional form assumptions. Typically the only condition imposed on the unknown

PDF is that it has at least first two order bounded derivatives. In this circumstance, we

may use only local information about the value of the PDF at any given point in the

support. That is, the value of the PDF of a point x must be calculated from data values

that lie in a neighborhood of x, and to ensure consistency the neighborhood must shrink

to zero as the sample size T increases. In the case of kernel density estimation, the radius

of the effective neighborhood is roughly equal to the so-called “bandwidth”of a kernel

density estimator, which is essentially a smoothing parameter. Under the assumption

that the PDF is univariate with at least first two order bounded derivatives, and using a

nonnegative kernel function, the size of bandwidth that optimizes the performance of the

estimator in term of the mean squared error (MSE) criterion is proportional to the rate

T−1/5. The number of “parameters”needed to model the unknown PDF within a given

interval is approximately equal to the number of bandwidths that can be fitted into that

interval, and so is roughly of size T 1/5. Thus, nonparametric density estimation involves

the adaptive fitting of approximately T 1/5 parameters, with this number growing with

the sample size T.
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Suppose we are interested in estimating the value of the PDF g(x) at a given point

x in the support of Xt. There are two basic instruments in kernel estimation: the kernel

function K(·) and the bandwidth h. Intuitively, the former gives weighting to the ob-
servations in an interval containing the point x, and the latter controls the size of the

interval containing observations.

We first introduce an important instrument for local smoothing. This is called a

kernel function.

Definition [Second Order Kernel K(·)]: A second order or positive kernel function
K(·) is a pre-specified symmetric PDF such that
(1)
∫∞
−∞K(u)du = 1;

(2)
∫∞
−∞K(u)udu = 0;

(3)
∫∞
−∞ u

2K(u)du = CK <∞;

(4)
∫∞
−∞K

2(u)du = DK <∞.

Intuitively, the kernel function K(·) is a weighting function that will “discount”the
observations whose values are more away from the point x of interest.

The kernel functions satisfying the above condition are called a second order or

positive kernel. It should be emphasized that the kernel K(·) has nothing to do with
the unknown PDF g(x) of {Xt}; it is just a weighting function for observations when
constructing a kernel density estimator. More generally, we can define a q-th order kernel

K(·), where q ≥ 2.

Definition [qth Order Kernel]: K(·) satisfies the conditions that
(1)
∫∞
−∞K(u)du = 1;

(2)
∫∞
−∞ u

jK(u)du = 0 for 1 ≤ j ≤ q − 1;

(3)
∫∞
−∞ u

qK(u)du <∞;

(4)
∫∞
−∞K

2(u)du <∞.

For a higher order kernel (i.e., q > 2), K(·) will take some negative values at some
points.

Question: Why is a higher order kernel useful? Can you give an example of a third

order kernel? And an example of a fourth order kernel?

Higher order kernels can reduce the bias of a kernel estimator to a higher order. An

example of higher order kernels is given in Robinson (1991).
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We now consider some examples of second order kernels:

• Uniform kernel

K(u) =
1

2
1(|u| ≤ 1);

• Gaussian kernel

K(u) =
1√
2π

exp(−1

2
u2); −∞ < u <∞.

• Epanechnikov Kernel
K(u) =

3

4
(1− u2)1(|u| ≤ 1);

• Quartic kernel
K(u) =

15

16
(1− u2)21(|u| ≤ 1).

Among these kernels, the Gaussian kernel has unbounded support, while all other

kernels have bounded supports of [−1, 1]. Also, the uniform kernel assigns an equal

weighting within its support; in contrast, all other kernels have a downward weighting

scheme.

Question: How does the kernel method work?

Let x be a fixed point in the support of Xt. Given a pre-chosen second kernel K(u),

we define a kernel density estimator for g(x) based on the random sample {Xt}Tt=1 :

ĝ(x) = T−1
T∑
t=1

Kh(x−Xt)

=
1

T

T∑
t=1

1

h
K

(
x−Xt

h

)
=

1

h

∫ ∞
−∞

K

(
x− y
h

)
dF̂ (y),

where

Kh(u) =
1

h
K
(u
h

)
,

h = h(T ) > 0 is called a bandwidth or a window size, and F̂ (y) = T−1
∑

T
t=11(Xt ≤ y)

is the marginal empirical distribution function of the random sample {Xt}Tt=1. This is
exactly the same as the estimator introduced in Chapter 3, and it was first proposed by

Rosenblatt (1956) and Parzen (1962) and so is also called the Rosenblatt-Parzen kernel

density estimator.
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We see immediately that the well-known histogram is a special case of the kernel

density estimator ĝ(x) with the choice of a uniform kernel.

Example 1 [Histogram]: If K(u) = 1
2
1(|u| ≤ 1), then

ĝ(x) =
1

2hT

T∑
t=1

1(|x−Xt| ≤ h).

Intuitively, with the choice of a uniform kernel, the kernel density estimator ĝ(x) is

the relative sample frequency of the observations on the interval [x − h, x + h] which

centers at point x and has a size of 2h. Here, 2hT is approximately the sample size

of the small interval [x − h, x + h], when the size 2h is small enough. Alternatively,

T−1
∑T

t=1 1(|x − Xt| ≤ h) is the relative sample frequency for the observations falling

into the small interval [x−h, x+h], which, by the law of large numbers, is approximately

equal to the probability

E [1(|x−Xt| ≤ h)] = P (x− h ≤ Xt ≤ x+ h)

=

∫ x+h

x−h
g(y)dy

≈ 2hg(x)

if h is small enough and g(x) is continuous around the point x. Thus, the histogram is

a reasonable estimator for g(x), and indeed it is a consistent estimator g(x) if h vanishes

to zero but at a slower rate than sample size T goes to infinity.

Question: Under what conditions will the density estimator ĝ(x) be consistent for

the known density function g(x)?

We impose an assumption on the data generating process and the unknown PDF

g(x).

Assumption 3.1 [Smoothness of PDF]: (i) {Xt} is a strictly stationary process
with marginal PDF g(x); (ii) g(x) has a bounded support on [a, b], and is continuously

twice differentiable on [a, b], with g′′(·) being Lipschitz-continuous in the sense that
|g′′(x1)− g′′(x2)| ≤ C|x1−x2| for all x1, x2 ∈ [a, b], where a, b and C are finite constants.

Question: How to define the derivatives at the boundary points?
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By convention, the derivatives of g(·) at boundary points a and b are

g′(a) = lim
x→0+

g(a+ x)− g(a)

x
,

g′(b) = lim
x→0−

g(b+ x)− g(b)

x
.

Similarly for the second derivatives g′′(a) and g′′(b) at the boundary points of the support

[a, b].

For convenience, we further impose an additional condition on kernel K(·), which
will actually be maintained throughout this chapter.

Assumption 3.2 [Second Order Kernel with Bounded Support]: K(u) is a

positive kernel function with a bounded support on [−1, 1].

This bounded support assumption is not necessary, but it simplifies the asymptotic

analysis and interpretation.

2.1.2 Asymptotic Bias and Boundary Effect

Our purpose is to show that ĝ(x) is a consistent estimator for g(x) for a given point x

in the support. Now we decompose

ĝ(x)− g(x) = [Eĝ(x)− g(x)] + [ĝ(x)− Eĝ(x)].

It follows that the mean squared error of the kernel density estimator ĝ(x) is given by

MSE(ĝ(x)) = [Eĝ(x)− g(x)]2 + E [ĝ(x)− Eĝ(x)]2

= Bias2[ĝ(x)] + var [ĝ(x)] .

The first term is the squared bias of the estimator ĝ(x), which is nonstochastic, and the

second term is the variance of ĝ(x) at the point x. We shall show that under suitable

regularity conditions, both the bias and the variance of ĝ(x) vanish to zero as the sample

size T goes to infinity.

We first consider the bias. For any given point x in the interior region [a+ h, b− h]
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of the support [a, b] of Xt, we have

E [ĝ(x)]− g(x) =
1

T

T∑
t=1

EKh(x−Xt)− g(x)

= E [Kh (x−Xt)]− g(x) (by identical distribution)

=

∫ b

a

1

h
K

(
x− y
h

)
g(y)dy − g(x)

=

∫ (b−x)/h

(a−x)/h
K(u)g(x+ hu)du− g(x) (by change of variable

y − x
h

= u)

=

∫ 1

−1
K(u)g(x+ hu)du− g(x)

= g(x)

∫ 1

−1
K(u)du− g(x)

+hg′(x)

∫ 1

−1
uK(u)du

+
1

2
h2
∫ 1

−1
u2K(u)g′′(x+ λhu)du

=
1

2
h2CKg

′′(x) +
1

2
h2
∫ 1

−1
[g′′(x+ λhu)− g′′(x)]u2K(u)du

=
1

2
h2CKg

′′(x) + o(h2)

where the second term ∫ 1

−1
[g′′(x+ λhu)− g′′(x)]u2K(u)du→ 0

as h → 0 by Lebesgue’s dominated convergence theorem, and the boundedness and

continuity of g′′(·) and
∫ 1
−1 u

2K(u)du <∞.

Therefore, for the point x in the interior region [a + h, b − h], the bias of ĝ(x) is

proportional to h2. Thus, we must let h→ 0 as T →∞ in order to have the bias vanish

to zero as T →∞.

The above result for the bias is obtained under the identical distribution assumption

on {Xt}. It is irrelevant to whether {Xt} is IID or serially dependent. In other words,
it is robust to serial dependence in {Xt}.

Question: What happens to the bias of ĝ(x) if x is outside the interior region [a+h, b−
h]?
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We say that x is outside the interior region [a+h, b−h] if x in [a, a+h] or [b−h, b].
These two regions are called boundary regions of the support. Their sizes are equal to

h and so vanish to zero as the sample size T increases.

Suppose x = a + λh ∈ [a, a + h), where λ ∈ [0, 1). We shall call x is a point in the

left boundary region of the support [a, b]. Then

E [ĝ(x)]− g(x) = E [Kh (x−Xt)]− g(x)

=
1

h

∫ b

a

K

(
x− y
h

)
g(y)dy − g(x)

=

∫ (b−x)/h

(a−x)/h
K(u)g(x+ hu)du− g(x)

=

∫ 1

−λ
K(u)g(x+ hu)du− g(x)

= g(x)

∫ 1

−λ
K(u)du− g(x)

+h

∫ 1

−λ
uK(u)g′(x+ τhu)du

= g(x)

[∫ 1

−λ
K(u)dx− 1

]
+O(h).

= O(1)

if g(x) is bounded away from zero, that is, if g(x) ≥ ε > 0 for all x ∈ [a, b] for any small

but fixed constant ε. Note that the O(1) term arises since
∫ 1
−λK(u)dx = 1 for any λ < 1.

Thus, if x ∈ [a, a+ h) or (b− h, b], the bias E[ĝ(x)]− g(x) may never vanish to zero

even if h→ 0. This is due to the fact that there is no symmetric coverage of observations

in the boundary region [a, a+ h) or (b− h, b]. This phenomenon is called the boundary
effect or boundary problem of kernel estimation.

There have been several solutions proposed in the smoothed nonparametric literature.

These include the following methods.

• Trimming Observations: Do not use the estimate ĝ(x) when x is in the bound-

ary regions. That is, only estimate and use the densities for points in the interior

region [a+ h, b− h].

This approach has a drawback. Namely, valuable information may be lost because

ĝ(x) in the boundary regions contain the information on the tail distribution of
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{Xt}, which is particularly important to financial economists (e.g., extreme down-
side market risk) and welfare economics (e.g., the low-income population).

• Using a Boundary Kernel:

To modify the kernel K[(x − Xt)/h] when (and only when) x is the boundary

regions such that it becomes location-dependent in the boundary region. For

example, Hong and Li (2005) use a simple kernel-based density estimator

ĝ(x) =
1

T

T∑
t=1

Kh(x,Xt),

where

Kh(x, y) ≡


h−1K

(
x−y
h

)
/
∫ 1
−(x/h)K(u)du, if x ∈ [0, h),

h−1K
(
x−y
h

)
, if x ∈ [h, 1− h],

h−1K
(
x−y
h

)
/
∫ (1−x)/h
−1 K(u)du, if x ∈ (1− h, 1]

and K(·) is a standard second order kernel. The idea is to modify the kernel
function in the boundary regions so that the integral of the kernel function is

unity. Then the bias is O(h2) for all x ∈ [a + h, b − h] in the interior region and

is at most O(h) for x ∈ [a, a + h) and (b − h, b] in the boundary regions. The

advantage of this method is that it is very simple and always gives positive density

estimates. The drawback is that the bias at the boundary region can be as slow

as O(h), which is slower than O(h2) in the interior region.

• Using a Jackknife Kernel: For x in the interior region [a + h, b − h], use the

standard positive kernelK(·). For x in the boundary regions [a, a+h) and (b−h, b],
use the following jackknife kernel

Kξ(u) ≡ (1 + r)
K(u)

ωK(0, ξ)
− (r/α)

K(u/α)

ωK(0, ξ/α)
,

where ωK(l, ξ) ≡
∫ 1
−ξ u

lK(u)du for l = 0, 1, r ≡ r(ξ) and α ≡ α(ξ) depend

on parameter ξ ∈ [0, 1]. When x ∈ [a, a + h), we have ξ = (x − a)/h; when

x ∈ (b− h, b], we have ξ = (b− x)/h. In both cases, we set

r ≡ ωK(1, ξ)/ωK(0, ξ)

αωK(1, ξ/α)/ωK(0, ξ/α)− ωK(1, b)/ωK(0, ξ)
.
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As suggested in Rice (1986), we set α = 2 − ξ. Given ξ ∈ [0, 1], the support of

Kξ(·) is [−α, α]. Consequently, for any ξ ∈ [0, 1],∫ αξ

−α
Kξ(u)du =

∫ α

−αξ
Kξ(u)du = 1,∫ αξ

−α
uKξ(u)du = −

∫ α

−αξ
Kξ(u)du = 0,∫ αb

−α
u2Kξ(u)du =

∫ α

−αb
u2Kξ(u)du > 0,∫ αb

−α
K2
ξ (u)du =

∫ α

−αb
K2
ξ (u)du > 0.

The bias is O(h2) for all points x ∈ [a, b], including those in the boundary regions.

We note that the jackknife kernel formula in Härdle (1990, Section 4.4) is incorrect.

• Data Reflection:

The reflection method is to construct the kernel density estimate based on an aug-

mented data which combined both the “reflected”data {−Xt}Tt=1 and the original
data {Xt}Tt=1 with support on [0, 1]. Suppose x is a boundary point in [0, h) and

x ≥ 0. Then the reflection method gives an estimator

ĝ(x) =
1

T

T∑
t=1

Kh(x−Xt) +
1

T

T∑
t=1

Kh[x− (−Xt)].

Note that with the support [−1, 1] of kernel K(·), when x is away from the bound-
ary, the second term will be zero. Hence, this method only corrects the density es-

timate in the boundary region. See Schuster (1985, Communications in Statistics:

Theory and Methods) and Hall and Wehrly (1991, Journal of American Statisti-

cal Association). This method has been extended by Chen and Hong (2012) and

Hong, Sun and Wang (2018) to estimate time-varying functions (i.e., deterministic

functions of time).

Question: What is the general formula for the kernel density estimator when the

support of Xt is [a, b] rather than [0, 1]?

Suppose x is a boundary point in [a, a+ h).Then the density estimator becomes

ĝ(x) =
1

T

T∑
t=1

Kh(x−Xt) +
1

T

T∑
t=1

Kh[x− (−(Xt − a))].
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• Transformation:

Put Yt = q(Xt), where q(·) is a monotonic increasing function whose values range
from −∞ to ∞. Then

ĝX(x) = q′(x)ĝY [q(x)],

where ĝY (·) is the kernel density estimator for Yt based on the transformed sample
{Yt}Tt=1, which has infinite support.

Question: Is there any free lunch with the use of the transformation method?

• Local Polynomial Fitting.

Local polynomial automatically adapts to the boundary regions and the bias in

the boundary region is the same in order of magnitude as the bias in the interior

region. This will be discussed later.

2.1.3 Asymptotic Variance

Question: We have dealt with the bias of ĝ(x). Then, what is the variance of ĝ(x)?

For the time being, in order to simplify the analysis, we assume an IID random

sample. We will explain that the asymptotic result for the variance of ĝ(x) remains true

when {Xt} is not IID under certain regularity restrictions on temporal dependence in

{Xt}.

Assumption A.3 [IID Observations]: The random sample {Xt}Tt=1 is IID.

The IID assumption simplifies our calculating the asymptotic variance of ĝ(x). Later,

we can relax the independence assumption for {Xt} such that {Xt} is an α-mixing

process, a condition that allows weak temporal dependence (see Chapter 2). This will

not change the asymptotic variance result for ĝ(x).

Given any point x in the support [a, b], put

Zt ≡ Zt(x) = Kh(x−Xt)− E [Kh(x−Xt)] .
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Then {Zt}Tt=1 is IID with mean zero. It follows that the variance of ĝ(x),

E [ĝ(x)− Eĝ(x)]2 = E

(
T−1

T∑
t=1

Zt

)2

=
1

T 2

T∑
t=1

var(Zt)

=
1

T
var(Zt)

=
1

T

[
E[K2

h(x−Xt)]− [EKh(x−Xt)]
2
]

=
1

Th2

∫ b

a

K2

(
x− y
h

)
g(y)dy

− 1

T

[
1

h

∫ b

a

K

(
x− y
h

)
g(y)dy

]2
=

1

Th
g(x)

∫ 1

−1
K2(u)du[1 + o(1)] +O(T−1)

=
1

Th
g(x)Dk + o(T−1h−1),

where the last second equality follows by change of variable x−y
h

= u.

The variance of ĝ(x) is proportional to (Th)−1, which is the approximate sample size

for the observations which fall into the interval [x− h, x+ h].

Next, we discuss the impact of serial dependence in {Xt} on the asymptotic variance
of ĝ(x).

Question: What happens to the variance of ĝ(x) if {Xt} is serially dependent.

Suppose {Xt} is a strictly stationary α-mixing process. Then under suitable condi-
tions on the α-mixing coeffi cient α(j), for example, α(j) ≤ Cj−β for β > 5

2
, we have the

same MSE formula for ĝ(x) as we have when {Xt} is IID. This is formally established
in Robinson (1983). See Robinson (1983, Journal of Time Series Analysis) for details.

Intuitively, when a bounded support kernel K(u) is used, the kernel density estimator

is an weighted average of nonlinear functions of observations {Xt}Tt=1 which fall into
the small interval [x − h, x + h]. The observations that fall into the small interval are

determined by the closeness of their values to the value of x, not by closeness in time.

Suppose we re-lable the observations falling into the small interval by a subsequence or

subsample {X̃t∗}T
∗

t∗=1. Then the size of the subsample T
∗is of the order of Th, and the
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time index t∗ are not consercative time periods but rather far away from each other in

time. This implies that the observations in the subsequence behave like an IID sequence

when serial dependence in the original time series {Xt} is not too strong.

We now formally examine the impact of serial dependence of {Xt} on the asymptotic
variance of the kernel density estimator ĝ(x). For this aim, we first introduce the strong

mixing condition which is called α-mixing.

Definition [α-mixing]: Let {Xt} be a strictly stationary time series process. For
j = 1, 2, ..., define

α(j) = sup
A∈F0−∞,B∈F∞j

|P (A ∩B)− P (A)P (B)| ,

where F ji denotes the σ-algebra generated by {Xt, i ≤ t ≤ j}. Then the process {Xt} is
said to be α-mixing if α(j)→ 0 as j →∞.

Similar to ergodicity, the α-mixing condition is a concept for asymptotic indepen-

dence. A mixing process can be viewed as a sequence of random variables for which

the past and distant future are asymptotically independent. The α-mixing condition

implies ergodicity. See White (Asymptotic Theory for Econometricians, 2001). In fact,

there are several concepts of mixing, such as α-mixing, β-mixing, and φ-mixing. Among

them, α-mixing is the weakest condition on serial dependence; it is also called strong

mixing.

If {Xt} is a strictly stationary Markov chain, the mixing coeffi cient α(j) can be

effectively defined with (F0−∞,F∞j ) replaced by (σ(X0), σ(Xn)), and in this case,

α(j) ≤ 1

2

∫ ∫
|fj(x, y)− g(x)g(y)| dxdy,

where fj(x, y) is the joint PDF of (Xt, Xt−j).

We first state a useful lemma.

Lemma [Doukhan (1994)]: Let X and Y be two real random variables. Define

α = sup
A∈σ(X),B∈σ(Y )

|P (A ∩B)− P (A)P (B)| .

(1) Suppose E(|X|p + |X|q) <∞ for some p, q ≥ 1, and 1/p+ 1/q < 1. Then

|cov(X, Y )| ≤ 8α1/r(E|X|p)1/p(E|X|q)1/q,
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where r = (1− 1/p− 1/q)−1.

(2) If P (|X| ≤ C1) = 1 and P (|Y | ≤ C2) = 1 for some constants C1 and C2, then

|cov(X, Y )| ≤ 4αC1C2.

Theorem [Asymptotic Variance of ĝ(x) under Mixing Conditions]: Let {Xt} be
a strictly stationary α-mixing process with the mixing coeffi cient α(j) ≤ C−βj for some

C > 0 and β > 2. Assume that the pairwise joint density function fj(x, y) is bounded

uniformly in (x, y) and in lag order j. Then for x ∈ [a, b], where a, b are finite constants,

var [ĝ(x)] =
1

Th
g(x)DK + o(T−1h−1).

Proof: Put

Zt = Kh(x,Xt) =
1

h
K(

x−Xt

h
).

Then by strict stationarity of {Xt}, we have

var [ĝ(x)] = var

(
T−1

T∑
t=1

Zt

)

=
1

T
var(Z1) + 2

1

T

T−1∑
j=1

(1− j/T )cov(Z0, Zj).

Note that E(Z1) = E[ĝ(x)] = O(1). By change of variable, we have

var(Z1) = E[K2
h(x,X1)]− (EZ1)

2

=
1

h
g(x)DK +O(1).

where the first term dominates the second term in terms of order of magnitude. Thus,

it remains to show
1

T

T−1∑
j=1

cov(Z0, Zj) = o(h−1).

Because |Z0| ≤ Ch−1, we have

|cov(Z0, Zj)| ≤ 4(Ch−1)2α(j)

by Billingsley’s inequality. It follows that

T−1∑
j=m(T )+1

|cov(Z0, Zj)| ≤ 4C2h−2
T−1∑

j=m(T )+1

j−β ≤ C3m(T )1−βh−2
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where m(T )→∞ as T →∞.
On the other hand,

|cov(Z0, Zj)| = |E(Z0Zj)− E(Z0)E(Zj)|

≤
∫
Kh(x, x

′)Kh(y, y
′)fj(x

′, y′)dx′dy′ + [E(Z0)]
2

≤ C

[∫ ∞
−∞

Kh(x, x
′)dx′

]2
+ [E(Z0)]

2

≤ C2.

Hence, we have
m(T )∑
j=1

|cov(Z0, Zj)| ≤ Cm(T ).

By setting m(T ) = h−2/β, we have

T−1∑
j=1

|cov(Z0, Zj)| = O(h−2/β) = o(h−1)

for β > 2. This completes the proof.

The asymptotic variance of ĝ(x) is exactly the same as that under the IID assump-

tion on {Xt}. This is a bit surprising, but it is true. It follows because when {Xt}
is not IID, the variance of ĝ(x) can be decomposed as the sum of individual variances

{var[Kh(x,Xt)]}Tt=1 and the sum of all possible covariance terms {cov[Kh(x,Xt), Kh(x,Xs)]}t6=s
together. Given the strong-mixing condition, the sum of all possible covariance terms

{cov[Kh(x,Xt), Kh(x,Xs)]}t6=s together is of smaller order in magnitude than the sum
of all individual variances {var[Kh(x,Xt)]}Tt=1, due to the smoothing parameter h.

Hart (1996) provides a nice intuition for this result. Suppose the kernel K(·) has
support on [−1, 1], as assumed in this chapter. Then the kernel density estimator at

the point x uses only the local data points inside the local interval [x − h, x + h]. The

observations whose values fall into this local interval are generally far away from each

other in time. Thus, although the data {Xt}Tt=1 in the original sequence may be highly
correlated, the dependence for the new subsequence in the local interval around x can

be much weaker. As a result, the local data look like those from an independent sample.

Hence, one would expect that the asymptotic variance of the kernel density estimator is

the same as that for the independent observations when certain mixing conditions are

imposed.
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References: Kernel estimation in time series: Robinson (1983, Journal of Time Series

Analysis), Fan and Yao (2003, Nonlinear Time series)

2.1.4 MSE and Optimal Bandwidth

It follows that the mean squared error (MSE) of ĝ(x) is given by

MSE[ĝ(x)] = E [ĝ(x)− g(x)]2

= var[ĝ(x)] + Bias2[ĝ(x), g(x)]

=
1

Th
g(x)DK +

1

4
h4 [g′′(x)]

2
C2K + o(T−1h−1 + h4)

= O(T−1h−1 + h4).

By Chebyshev’s inequality, for any given point x in the interior region [a+ h, b− h], we

have

ĝ(x)− g(x) = OP (T−1/2h−1/2 + h2).

Therefore, for ĝ(x) →p g(x), we need Th → ∞, h → 0 as T → ∞. Under the stated
assumptions, the estimator ĝ(x) is always consistent for the unknown density g(x) but

at a slower rate than the parametric T−1/2. This means that a large sample is needed to

obtain a reasonable estimate for g(x).

Moreover, the bias of ĝ(x) depends on the smoothness of the unknown function g(·).
In particular, if the second derivative g′′(x) has a relatively sharp spike at the point x,

it is diffi cult to obtain a good estimate g(·) at the point x.

We can also obtain a relative MSE criterion when g(x) > 0:

MSE[ĝ(x)/g(x)] =
MSE[ĝ(x)]

g2(x)

= E

[
ĝ(x)− g(x)

g(x)

]2
=

1

Thg(x)
DK +

1

4
h4
[
g′′(x)

g(x)

]2
C2K .

+o(T−1h−1 + h4)

= O(T−1h−1 + h4)

The expression of the relative MSE indicates that it is very diffi cult to obtain a

reasonable estimate of g(x) in the sparse area where relatively few observations are
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available (i.e., when g(x) is small), or in the area where g(·) changes dramatically (i.e.,
when the curvature g′′(x)/g(x) is large in absolute value).

As can be seen from the MSE formula for ĝ(x), a small bandwidth h will reduce the

bias but inflate the variance, and a large bandwidth will increase the bias but reduce

the variance. The bandwidth is a smoothing parameter. When the bandwidth h is so

small such that the squared bias is smaller than the variance, we say that there exists

undersmoothing; when the bandwidth is so large such that its squared bias is larger than

the variance, we say that there exists oversmoothing. Optimal smoothing is achieved

if the bandwidth balances the squared bias and the variance of ĝ(x). We now consider

the optimal choice of the bandwidth h. The optimal bandwidth can be obtained by

minimizing MSE[ĝ(x)] :

h0 =

[
DK

C2K

1/g(x)

[g′′(x)/g(x)]2

] 1
5

T−1/5.

The less smooth the PDF g(x) is or the more sparse the observations are around the

point x, the smaller the optimal bandwidth h0 for any given sample size T. The optimal

bandwidth h0 gives the optimal convergence rate for ĝ(x) :

ĝ(x)− g(x) = OP (T−2/5).

The convergence rate T−2/5 is slower than the parametric rate T−1/2.

The optimal bandwidth h0 is unknown, because it depends on the unknown density

function g(x) and its second order derivative g′′(x).

Question: How to obtain a consistent estimator of this optimal bandwidth in practice?

Since we have obtained a closed form expression for the optimal bandwidth h0, we can

obtain a consistent estimator of h0 by plugging in some preliminary consistent estimators

for g(x) and g′′(x). Suppose we have some initial preliminary estimators, say g̃(x) and

g̃′′(x), for g(x) and g′′(x) respectively. Then we can plug them into the above formula for

h0, obtaining an estimator for h0. With such a data-dependent bandwidth, we obtain a

new kernel estimator which has better statistical properties than an arbitrary choice of

h. This is the well-known plug-in method. We note that even if g̃(x) and g̃′′(x) are not

consistent for g(x) and g′′(x), then the second stage kernel density estimator ĝ(x) is still

consistent for g(x), although it is not optimal. However, consistency of g̃(x) and g̃′′(x)
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for g(x) and g′′(x) respectively ensures that ĝ(x) is an asymptotically optimal estimator

for g(x).

In addition to the plug-in method to choose a data-driven bandwidth, there exists

other data-driven methods to choose an optimal bandwidth. One example is the cross-

validation method. For more discussion, see xxx.

As can be seen from the MSE formula, both the variance and squared bias of ĝ(x)

depend on the kernel function K. We now consider the choice of an optimal kernel.

Using the calculus of variation, it can be shown, as in Epanechnikov (1969, Theory of

Probability and Its Applications), that the optimal kernel that minimizes the MSE of

ĝ(x) over a class of positive kernel functions is the so-called Epanechnikov kernel:

K(u) =
3

4
(1− u2)1(|u| < 1).

In practice, it is found that the choice of h is more important than the choice of

K(u). See also Priestley (1962).

2.2 Multivariate Density Estimation

We now extend the kernel method to estimate a multivariate density function when Xt

is a strictly stationary vector-valued time series process.

Question: How to estimate a joint PDF f(x) of Xt = (X1t, X2t, ..., Xdt)
′, where x =

(x1, x2, ..., xd)
′ is a d× 1 vector?

Example 1: How to estimate the joint PDF fj(x, y) of (Xt, Xt−j)?

To estimate f(x), we define a product kernel density estimator

f̂(x) =
1

T

T∑
t=1

d∏
i=1

Kh(xi −Xit)

=
1

T

T∑
t=1

Kh(x−Xt),

where

Kh(x−Xt) =
d∏
i=1

Kh(xi −Xit).
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For simplicity, we have used the same bandwidth h for every coordinate. Different

bandwidths could be used for different coordinates. In practice, before using the same

bandwidth h, one can stabdardize all {Xit}Tt=1 by dividing by their sample standard
deviations respectively for all i = 1, .., d.

We first consider the bias of f̂(x). Suppose x is an interior point x such that xi ∈
[ai + h, bi − h] for all i = 1, ..., d. This implies that x is in a d-dimensional box each side

of which is [ai + h, bi − h] for i = 1, ..., d. It follows that the bias of f̂(x),

E
[
f̂(x)

]
− f(x) = EKh(x−Xt)− f(x)

= E
d∏
i=1

Kh (xi −Xit)− f(x)

=

∫
· · ·
∫ [ d∏

i=1

1

h
K

(
xi − yi
h

)]
f(y)dy − f(x)

=
d∏
i=1

∫ (bi−xi)/h

(ai−xi)/h
K(ui)f(x+ hu)du− f(x)

=

∫ 1

−1
· · ·
∫ 1

−1

d∏
i=1

K(ui)f(x+ hu)du− f(x)

= f(x)
d∏
i=1

∫ 1

−1
K(ui)dui − f(x)

+h
d∑
i=1

fi(x)

∫ 1

−1
uiK(ui)dui

+
1

2
h2

d∑
i=1

d∑
j=1

∫ 1

−1

∫ 1

−1
uiujK(ui)K(uj)fij(x+ λuh)duiduj

=
1

2
h2CK

d∑
i=1

fii(x) + o(h2)

= O(h2).

where fi(x) = ∂
∂xi
f(x), fij(x) = ∂2

∂xi∂xj
f(x), and the quantity

∑d
i=1 fii(x) is called the

Laplace of the joint PDF f(x).
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Next, put

Zt ≡ Zt(x)

= Kh(x−Xt)− EKh(x−Xt)

=
d∏
i=1

Kh(xi −Xit)− E
d∏
i=1

Kh(x−Xit).

Then {Zt} is IID with mean zero given that {Xt} is IID. It follows that the variance
of f̂(x)

E
[
f̂(x)− Ef̂(x)

]2
= E

[
T−1

T∑
t=1

[Kh(x−Xt)− EKh(x−Xt)]

]2

=
1

T 2

T∑
t=1

E(Z2t ) (by independence)

=
1

T
E

[
d∏
i=1

Kh(xi −Xit)− E
d∏
i=1

Kh(xi −Xit)

]2

=
1

T

E d∏
i=1

K2
h(xi −Xit)−

[
E

d∏
i=1

Kh(xi −Xit)

]2
=

1

Thd
f(x)Dd

K + o(T−1h−d).

We note that the asymptotic variance of f̂(x) is proprotional to the inverse of Thd,

where Thd is approximately the effective sample size for observations falling into a d-

dimensional subspace centered at point x, with each size equal to 2h. The asymptotic

variance of f̂(x) remains valid under a suitale α-mixing condition for the time series

{Xt}.

It follows that the MSE of f̂(x) is

MSE[f̂(x)]

=
1

Thd
f(x)Dd

K +
1

4
C2Kh

4

[
d∑
i=1

fii(x)

]2
+o(T−1h−d + h4)

= O(T−1h−d + h4).
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With a suitable choice of bandwidth h, the optimal MSE convergence rate of f̂(x)

to f(x) is T−
4

4+d , which can be obtained by setting the bandwidth

h0 =

[
dD2

K

C2K

1/f(x)

[
∑d

i=1 fii(x)/f(x)]2

] 1
d+4

T−
1
d+4 .

Thus, the MSE convergence rate is

• MSE[f̂(x)] ∝ T−
4
5 if d = 1,

• MSE[f̂(x)] ∝ T−
2
3 if d = 2,

• MSE[f̂(x)] ∝ T−
4
7 if d = 3.

The larger dimension d, the slower convergence of f̂(x). This is the so-called “curse

of dimensionality”associated with multivariate nonparametric estimation. It implies

that a large sample size is needed in order to have a reasonable estimation for f(x).

In particular, the same size T has to be increased exponentially fast as the dimension

d increases in order to achieve the same level of estimation accuracy and precision.

For most typical sample sizes encounterd in economics and finance, it is rare to see

nonaparemetric estimation with dimension d > 5.

Question: How to deal with the curse of dimensionality?

There are various methods to deal with the curse of dimensionality. For example,

• Imposing Multiplicability or Additicability Conditions.

Suppose multiplicability conditions for f(x) holds such as

f(x) =
d∏
i=1

gi(xi).

Then one can estimate gi(xi) separately. When f(x) is a joint density function,

multiplicability occurs when and only when X1t, X2t, ..., Xdt are mutually indpen-

dent. For functions other than probability densities, an additivity condition can

be imposed to reduce the dimension of estimation.
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• Projection Pursuit.

This approach assumes that a multivariate function is an unknown function of the

linear combination of d explanary variables, and then use a nonparametric method

to estimate the unknown function and the combination coeffi cients. A well-known

class of models in econometrics is single-index models for which a function of Xt

is assumed to be an unknown function of a linear combination of the components

of Xt, where the combination coeffi cients are also unknown.

• Imposing the Markov Condition.

Suppose the time series {Xt} is a Markov process. Then

f(Xt|It−1) = f(Xt|Xt−1)

=
f(Xt, Xt−1)

g(Xt−1)
,

where It−1 = (Xt−1, Xt−2, ...) is the set of infinite dimension. Here, f(Xt, Xt−1)

depends on only Xt and Xt−1.

Kernel density estimators have been widely used in time series econometrics and financial

econometrics. For example,

• Aït-Sahalia (1996, Review of Financial Studies) uses the kernel-based marginal
density estimator ĝ(x) to test the adequacy of a diffusion model for short-term

interest rates.

• Gallant and Tauchen (1996, Econometric Theory) use the Hermite polynomial-
based estimator for the conditional pdf ofXt given It−1 to estimate continuous-time

models effi ciently.

• Hong and Li (2005, Review of Financial Studies) use the kernel-based joint density
estimator f̂j(x, y) to test the adequacy of continuous-time models and consider an

application to affi ne term structure models of interest rates.

• Hong and White (2005, Econometrica) use the kernel-based joint density esti-
mator f̂j(x, y) to construct a nonparametric entropy-density measure for serial

dependence with a well-defined asymptotic distribution.
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• Su and White (2008, Econometric Theory) propose a Hellinger metric-based test
for conditional dependence test which is applicable to test for general Granger

causality by checking whether

f(Xt|Xt−1, ..., Xt−p) = f(Xt|Xt−1, ..., Xt−p, Yt−1, ..., Yt−q),

where the conditional PDFs are estimated using the kernel method, and the lag

orders p and q are given in advance.

• de Matos and Fernandes (2007, Journal of Econometrics) propose a test for the
Markov property of a time series process:

f(Xt|It−1) = f(Xt|Xt−1).

They compare two kernel estimators for the conditional PDFs

f(Xt|Xt−1, Xt−j) =
f(Xt, Xt−1, Xt−j)

f(Xt−1, Xt−j)

and

f(Xt|Xt−1) =
f(Xt, Xt−1)

f(Xt−1)
.

• Wang and Hong (2017, Econometric Theory) propose a test for conditional inde-
pendence which is applicable to test the Markob property and Granger causality

in distribution. They estimate the conditional characteristic functuon rather than

the conditional density function of {Xt}, thus avoiding the curse of dimensionality
problem when the dimension d of Xt is large.

There are other possible approaches to testing the Markov property.

In general, this requires checking whether

f(Xt = x|It−1) = f(Xt = x|Xt−1),

where It−1 = {Xt, Xt−1, ..., }. A possible approach to testing the Markov property of a
time series can be based on the following lemma.

Lemma [Probability Integral Transforms of Markov Process]: Suppose {Xt} is
a strictly stationary process. Denote the conditional PDF of Xt given Xt−1 as

f(x|y) = f(Xt = x|Xt−1 = y).
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Define the probability integral transform

Zt =

∫ Xt

−∞
f(x|Xt−1)dx = Ft(Xt),

where Ft(x) = P (Xt ≤ x|Xt−1). If {Xt} is Markovian, then

{Zt} ∼ IID U [0, 1].

3 Nonparametric Regression Estimation
Question: How to estimate a regression function E(Yt|Xt) using an observed bivariate

sample {Yt, Xt}Tt=1? Note that both Yt and Xt are random variables here.

We first consider a few examples of regression functions.

Example 1: The autoregression function

rj(Xt−j) = E(Xt|Xt−j).

We can write

Xt = rj(Xt−j) + εt,

where E(εt|Xt−j) = 0.

Example 2: The conditional variance

σ2j(x) = var(Xt|Xt−j)

= E(X2
t |Xt−j)− [E(Xt|Xt−j)]

2 .

Example 3: The conditional distribution function

Ft(x) = P (Xt ≤ x|It−1)

= E [1(Xt ≤ x)|It−1] ,

where It−1 is an information set available at time t − 1. If we assume that {Xt} is an
Markovian process. Then

Ft(x) = E [1(Xt ≤ x)|Xt−1] .

This is a generalized regression function of 1(Xt ≤ x) on Xt−1.
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Example 4: The conditional characteristic function

ϕt(u) = E [exp(iuXt)|It−1] .

If {Xt} is an Markovian process, then

ϕt(u) = E [exp(iuXt)|Xt−1] .

This is a generalized regression function of exp(iuXt) on Xt−1.

3.1 Kernel Regression Estimation

We first impose a regularity condition on the data generating process and the regression

function.

Assumption [DGP]: (i) Suppose {Yt, Xt}′ is an IID sequence such that the regression
function r(x) ≡ E(Yt|Xt = x) exists and is twice continuously differentiable; (ii) Xt is

a continuous random variable with support [a, b] and probability density g(x) which is

also twice continuously differentiable over [a, b]. Furthermore, g(x) > 0 for all x ∈ [a, b].

We will relax the IID assumption to a serially dependent time series process at a

later stage. Like in the case of density estimation, allowing mild serial dependence

(e.g., α-mixing) in {Yt, Xt}′ will not affect the asymptotic results derived under the IID
assumption.

Question: How to estimate the regression function r(x)?

We can always write

Yt = r(Xt) + εt,

where E(εt|Xt) = 0 and var(εt|Xt) = σ2(Xt). Note that conditional heteroskedasticity

may exist. We impose a continuity condition on σ2(x).

Assumption [Conditional Heteroskedasticity]: σ2(x) is continuous over the sup-

port [a, b] of Xt.
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3.1.1 Nadaraya-Watson Estimator

For any given x in the support of Xt, define a kernel-based regression estimator

r̂(x) =
m̂(x)

ĝ(x)
,

where the numerator

m̂(x) =
1

T

T∑
t=1

YtKh(x−Xt)

is a weighted sample mean of {Yt}, and, as before, the denominator

ĝ(x) = T−1
T∑
t=1

Kh(x−Xt)

is the kernel estimator for density g(x) at point x. This kernel regression estimator was

proposed by Nadaraya (1964) and Watson (1964) and so is also called the Nadaraya-

Watson estimator.

Alternatively, we can express

r̂(x) =
T∑
t=1

Ŵt(x)Yt,

where the weighting function

Ŵt(x) =
Kh(x−Xt)∑T
t=1Kh(x−Xt)

,

which sums to unity, that is,
T∑
t=1

Ŵt = 1.

Therefore, the Nadaraya-Watson estimator is a local weighted sample mean of {Yt}nt=1,
where the weight Ŵt(x) is zero outside the interval [x− h, x+ h] when the kernel K(u)

has bounded support on [−1, 1].

We first provide a geometric interpretation for r̂(x).When the uniform kernelK(u) =
1
2
1(|u| ≤ 1) is used, the Nadaraya-Watson estimator becomes

r̂(x) =

∑T
t=1 Yt1(|Xt − x| ≤ h)∑T
t=1 1(|Xt − x| ≤ h)

.
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This is a local sample mean, that is, the average of the observations {Yt}Tt=1 for which the
values of the corresponding explanatory variables {Xt} fall into the interval [x−h, x+h].

Tukey (1961) calls this estimator the regressogram. Intuitively, suppose r(·) is a
smooth function, and we consider a small interval [x − h, x + h], which is centered at

point x and has size 2h, where h is small. Then r(·) will be nearly a constant over this
small interval and can be estimated by taking an average of the observations {Yt} which
correspond to those {Xt} whose values fall into the small interval.

More generally, we can assign different weights to observations of {Yt}Tt=1 according
to their distances to the location x. This makes sense because the observations {Xt}Tt=1
closer to x will contain more information about r(x) at point x. The use of K(·) is to
assign different weights for observations {Yt, Xt}Tt=1.

Kernel regression is a special convolution filter used in engineering.

3.1.2 MSE and Optimal Bandwidth

Question: How to derive the asymptotic MSE of r̂(x)?

The Nadaraya-Watson estimator r̂(x) is a ratio of two random variables. To simplify

asymptotic analysis, for any given point x, we consider the decomposition

r̂(x)− r(x) =
m̂(x)− r(x)ĝ(x)

ĝ(x)

=
m̂(x)− r(x)ĝ(x)

E[ĝ(x)]

+
[m̂(x)− r(x)ĝ(x)]

E[ĝ(x)]
· [E[ĝ(x)]− ĝ(x)]

ĝ(x)

=
m̂(x)− r(x)ĝ(x)

E[ĝ(x)]

+ higher order term.

Here the second term is of a higher order term because

ĝ(x)− E[ĝ(x)]
p→ 0 as T →∞

and

E[ĝ(x)]→ g(x)

∫ 1

−1
K(u)du > 0 as h→ 0.
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It can be shown that the second term is of a higher order term that vanishes faster

than the first term (how?). As a consequence, the convergence rate of r̂(x) to r(x) is

determined by the first term, which is the dominant term.

For the first term, using Yt = r(Xt) + εt, we can write the numerator as follows:

m̂(x)− r(x)ĝ(x) =
1

T

T∑
t=1

[Yt − r(x)]Kh(x−Xt)

=
1

T

T∑
t=1

εtKh(x−Xt)

+
1

T

T∑
t=1

[r(Xt)− r(x)]Kh(x−Xt)

= V̂ (x) + B̂(x), say,

= variance component + bias component.

Here, the first term V̂ (x) is a variance effect, and the second term B̂(x) is a bias

effect.

We first consider the variance term. For simplicity, we first assume that {Yt, Xt} is
an IID sequence. Then for the variance component, we have

E
[
V̂ (x)2

]
= E

[
1

T

T∑
t=1

εtKh(x−Xt)

]2

=
1

T 2
E

[
T∑
t=1

εtKh(x−Xt)

]2

=
1

T 2

T∑
t=1

E[ε2tK
2
h(x−Xt)] (by independence, and E(εt|Xt) = 0)

=
1

T
E
[
ε2tK

2
h(x−Xt)

]
=

1

T
E
[
σ2(Xt)K

2
h(x−Xt)

]
(by E(ε2t |Xt) = σ2(Xt))

=
1

T

∫ b

a

[
1

h
K

(
x− y
h

)]2
σ2(y)g(y)dy

=
1

Th
σ2(x)g(x)

∫ 1

−1
K2(u)du[1 + o(1)],

by change of variable, and the continuity of σ2(·)g(·), where σ2(x) = E(ε2t |Xt = x) is

the conditional variance of εt or Yt given Xt = x. Note that the variance E[V̂ (x)]2 is
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proportional to the inverse of Th because Th can be viewed as the effective sample size

of the observations falling into the interval [x− h, x+ h].

On the other hand, for the denominator, we have as h→ 0,

E [ĝ(x)] = E [Kh(x−Xt)]

=

∫ b

a

1

h
K

(
x− y
h

)
g(y)dy

→ g(x)

∫ 1

−1
K(u)du = g(x)

if
∫ 1
−1K(u)du = 1. It follows that

E

[
V̂ (x)

E[ĝ(x)

]2
=

1

Th

σ2(x)

g(x)

∫ 1

−1
K2(u)du [1 + o(1)] .

Thus, the asymptotic variance of r̂(x) is proportional to (Th)−1, where Th is the

approximate (effective) sample size of the observations in the interval [x−h, x+h]. The

asymptotic variance of r̂(x) is also proportional to σ2(x) and to
∫ 1
−1K

2(u)du. Thus, the

use of a downward weighting kernel K(·) will reduce the variance of r̂(x) as opposed to

the use of the uniform kernel. In other words, it improves the effi ciency of the estimator

when one discounts observations away from the point x.

For the bias term B̂(x), we first write

B̂(x) = EB̂(x) +
[
B̂(x)− EB̂(x)

]
.
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For any given interior point x ∈ [a+ h, b− h], defining m(x) = r(x)g(x), we have

EB̂(x) = E[r(Xt)Kh(x−Xt)]− r(x)E[Kh(x−Xt)]

=

∫ b

a

r(z)Kh(x− z)g(z)dz − r(x)

∫ b

a

Kh(x− z)g(z)dz

=

∫ b

a

m(z)Kh(x− z)dz − r(x)

∫ b

a

g(z)Kh(x− z)dz

=

∫ (b−x)/h

(a−x)/h
m(x+ hu)K(u)du

−r(x)

∫ (b−x)/h

(a−x)/h
g(x+ hu)K(u)du

= m(x)

∫ 1

−1
K(u)du

+hm′(x)

∫ 1

−1
uK(u)du

+
1

2
h2m′′(x)

∫ 1

−1
u2K(u)du[1 + o(1)]

−r(x)g(x)

∫ 1

−1
K(u)du

−hr(x)g′(x)

∫ 1

−1
uK(u)udu

−1

2
h2r(x)g′′(x)

∫ 1

−1
u2K(u)du][1 + o(1)]

=
1

2
h2 [m′′(x)− r(x)g′′(x)]

∫ 1

−1
u2K(u)du[1 + o(1)]

=
1

2
h2[r′′(x)g(x) + 2r′(x)g′(x)]CK + o(h2),

where we have used the fact that

m′′(x) = [r(x)g(x)]′′

= [r′(x)g(x) + r(x)g′(x)]′

= r′′(x)g(x) + 2r′(x)g′(x) + r(x)g′′(x)

It follows that the standardized bias

E

[
B̂(x)

Eĝ(x)

]
=

h2

2

[
m′′(x)

g(x)
− r(x)g′′(x)

g(x)

]
CK + o(h2)

=
h2

2

[
r′′(x) +

2r′(x)g′(x)

g(x)

]
CK + o(h2),
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where we have made use of the fact that as h→ 0,

E[ĝ(x)]→ g(x)

∫ 1

−1
K(u)du = g(x)

if
∫ 1
−1K(u)du = 1. Intuitively, the bias of r̂(x) consists of two components: one is

1
2
h2[m′′(x)/g(x)]CK , which is contributed by the numerator m̂(x); the other is−1

2
h2[r(x)g′′(x)/g(x)]CK ,

which is contributed by the denominator ĝ(x), the estimator for density g(x).

Question: Do we have an asymptotically unbiased estimator if
∫ 1
−1K(u)du 6= 1 (but

other conditions on K(·) are the same (i.e.,
∫ 1
−1 uK(u)du = 0,

∫ 1
−1K(u)u2du = CK)?

Yes, we still have

E[B̂(x)] =
1

2
h2 [m′′(x)− r(x)g′′(x)]

∫ 1

−1
u2K(u)du[1 + o(1)].

Intuitively, both the numerator and denominator of the kernel regression estimator

r̂(x) will produce an integral
∫ 1
−1K(u)du and their ratio is unity although the integral

itself may not be equal to unity. This ensures that the asymptotic bias is still O(h2) if

K(u) is symmetric about 0. The asymptotic bais will be O(h) if K(u) is not symmetric

about 0.

Next, we consider the boundary bias problem for smoothed kernel regression.

Question: What happens to the bias E[B̂(x)] if x ∈ [a, a + h) ∪(b− h, b], that is, if x
is in the boundary regions? In particular, does E[B̂(x)]→ 0 as h→ 0?

Yes, we still have
E[B̂(x)]

E[ĝ(x)]
= O(h) = o(1)

for x in the boundary regions (say, x = a+ τh for τ ∈ [0, 1]). This is different from the

kernel density estimator ĝ(x). This follows because

E[B̂(x)] = [m(x)− r(x)g(x)]

∫ 1

−τ
K(u)du+O(h)

= O(h)

and therefore

E[B̂(x)]

E[ĝ(x)]
=

[m(x)− r(x)g(x)]
∫ 1
−τ K(u)du

g(x)
∫ 1
−τ K(u)du

+O(h)

= O(h)
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However, the order O(h), which arises due to the fact that
∫ 1
−τ uK(u)du 6= 0, is slower

than O(h2), the rate of the bias in the interior region. The boundary correction tech-

niques, such as the use of a jackknife kernel, are useful to further reduce the bias

E[B̂(x)]/E[ĝ(x)] for x in the boundary regions. They can reduce the bias up to order

O(h2), the same rate as in the interior regions, but still with different proportionalities.

It remains to show that B̂(x)− E[B̂(x)] is a higher order. Again, for simplicity, we

first assume that {Yt, Xt} is IID. Put

Zt ≡ Zt(x) = [r(Xt)− r(x)]Kh(x−Xt).

Then

E[B̂(x)− EB̂(x)]2 = E

[
1

T

T∑
t=1

(Zt − EZt)
]2

=
1

T 2

T∑
t=1

E(Zt − EZt)2 by independence

≤ 1

T
E(Z2t )

=
1

T
E
{

[r(Xt)− r(x)]2K2
h(x−Xt)

}
≤ Ch

T
[1 + o(1)] (why?)

is a higher order term.

It follows that

E[m̂(x)− r(x)ĝ(x)]2 = E[V̂ (x) + B̂(x)]2

= E[V̂ 2(x)] + E[B̂2(x)]

= E[V̂ 2(x)] + E[B̂2(x)] + E[B̂(x)− EB̂(x)]2

=
1

Th
DKσ

2(x)g(x)

+
h4

4
C2K [m′′(x)− r(x)g′′(x)]2

+o((Th)−1 + h4).

Therefore, the asymptotic mean square error (MSE) of r̂(x) is

E [r̂(x)− r(x)]2 =
1

Th

σ2(x)

g(x)
DK +

h4

4

[
r′′(x) + 2r′(x)g′(x)

g(x)

]2
C2K

+o((Th)−1 + h4)

= O(T−1h−1 + h4).
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The variance is proportional to (Th)−1 and the squared bias is proportional to h4.

As a result, an increase in h will reduce the variance but increase the bias, and a decrese

in h will increase the variance but reduce the bias. Optimal smoothing can be achieved

by balancing the variance and the squared bias. The optimal choice of h is obtained by

minimizing the MSE of r̂(x) :

h∗ = c∗T−1/5,

where the optimal proportionality

c∗ =

[
DK

C2K

σ2(x)/g(x)

[m′′(x)/g(x)− r(x)g′′(x)/g(x)]2

] 1
5

=

[
DK

C2K

σ2(x)g(x)

[r′′(x) + 2r′(x)g′(x)]2

] 1
5

Thus, the optimal bandwidth h∗ should be larger when the data is noisy (i.e., σ2(x)

is large) and should be small when the regression function r(x) is not smooth (large

derivatives).

Like in density estimation, the optimal kernel for kernel regression estimation remains

to be the Epanechnikov kernel

K(u) =
3

4
(1− u2)1(|u| < 1).

In practice, it is found that the choice of h is more important than the choice of K(·).

Question: How to estimate the derivatives of r(x), such as r′(x) and r′′(x) by the kernel

method?

One approach is to use r̂′(x) and r̂′′(x), assuming that K(·) is twice continuously
differentiable. However, it may be noted that the optimal h∗ that minimizes the as-

ymptotic MSE of r̂(·) is not the same as the optimal bandwidth h that minimizes the
asymptotic MSE of r̂(d)(·), where d = 1, 2 respectively. A larger bandwidth is needed to

estimate the derivatives of r(x).

In addition to the plug-in method, one can also use the cross-validation method to

choose a data-driven bandwidth h. Let r̂(t)(x) be defined in the same way as r̂(x) except

the t-th observation (Yt, Xt) is not used. This is called a “leave-one-out" estimator.

Then the cross-validation procedure is to choose h to minimize the following sum of
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squared residuals, namely,

ĥ∗ = min
h

T∑
t=1

[
Yt − r̂(t)(Xt)

]2
The main reason why a leave-one-out estimator is used is that if one used a kernel

regression estimator r̂(Xt) using all observations including observation (Yt, X
′
t)
′ at time

t, then the optimal bandwidth which minimizes the sum of squared residuals will be

obtained by setting h → 0 and r̂(Xt) = Yt. Furthermore, in the IID context, the leave-

one-out estimator avoids a nonzero cross-product term which would otherwise “disturb”

the mean squared error

MSE[r̂(·)] = E [Yt − r̂(Xt)]
2 .

In other words, the sum of squared residuals of the leave-one-out estimator r̂(t)(Xt),

scaled by the same size T, will converge to MSE[r̂(·)] plus a constant. As a result, it could
be shown (how?) that ĥ∗ will asymptotically minimize MSE[r̂(·)] = E [Yt − r̂(Xt)]

2 .

The cross-validation procedure is popular in nonparametric estimation, due to its opti-

mality and robustness (when compared with the plug-in method).

3.2 Local Polynomial Estimation

To provide an motivation for local polynomial smoothing, we now provide an alternative

interpretation for the Nadaraya-Watson estimator r̂(x). First, we consider a sum of

squared residuals (SSR) minimization problem

min
r

T∑
t=1

(Yt − r)2,

where r is a constant. The optimal solution is the sample mean

r̂ = Ȳ ≡ 1

T

T∑
t=1

Yt.

Next, we consider a local weighted sum of squared residuals minimization problem

min
r

T∑
t=1

(Yt − r)2Kh(x−Xt),

where r is, again, a real-valued constant. When K(u) has bounded support on [−1, 1],

this is the weighted sum of squared residuals to predict the observations {Yt} for which
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the values of the corresponding explanatory variables {Xt} fall into the interval [x −
h, x+ h]. The FOC is given by

T∑
t=1

(Yt − r̂)Kh(x−Xt) = 0.

It follows that

r̂ ≡ r̂(x)

=

∑T
t=1 YtKh(x−Xt)∑T
t=1Kh(x−Xt)

=
m̂(x)

ĝ(x)
.

This is a local constant estimator. In other words, the Nadaraya-Watson estimator can

be viewed as a locally weighted sample mean which mimimizes a locally weighted sum

of squared residuals.

Question: Why only use a local constant estimator? Why not use a local linear func-

tion? More generally, why not use a local polynomial?

Question: What are the gains, if any, to use a local polynomial estimator?

3.2.1 Local Polynomial Estimator

We now consider a local polynomial estimator for the regression function r(x), where

x is a given point in the support of Xt. Suppose z is an arbitrary point in a small

neighborhood of x, and r(z) is continuously differentiable with respect to z up to order

p + 1 in this neighborhood. Then by a (p + 1)-order Taylor series expansion, we have

for all z in a small neighborhood of a fixed point x,

r(z) =

p∑
j=0

1

j!
r(j)(x)(z − x)j +

1

(p+ 1)!
r(p+1)(x̄)(z − x)p+1

=

p∑
j=0

αj(z − x)j +
1

(p+ 1)!
r(p+1)(x̄)(z − x)p+1,

where x̄ lies in the segment between x and z, and the polynomial coeffi cient

αj ≡ αj(x)

=
1

j!
r(j)(x), j = 0, 1, ..., p,
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depends on the point x. This relation suggests that one can use a local polynomial

model to fit the function r(z) in the neighborhood of x as long as the observations in

this neighborhood are “suffi ciently rich.”

Therefore, we consider the following local weighted sum of squared residuals mini-

mization problem

min
α

T∑
t=1

[
Yt −

p∑
j=0

αj(Xt − x)j

]2
Kh(x−Xt) =

T∑
t=1

(Yt − α′Zt)2Kh(x−Xt),

where α = (α0, α1, ..., αp)
′ and Zt = Zt(x) = [1, (Xt − x), ..., (Xt − x)p]′. Note that

Zt = Zt(x) is a (p + 1)-dimensional local polynomial vector which depends on location

x. The resulting local weighted least squares estimator,

r̂(z) =

p∑
j=0

α̂j(z − x)j for all z near x,

is the so-called local polynomial estimator of r(z) for z near x, where α̂ is the locally

weighted least squares estimator, whose expression will be given below.

We now show that the intercept estimator α̂0 is an estimator for r(x), and ν!α̂ν is

an estimator for the derivative r(ν)(x), where 1 ≤ ν ≤ p.

Since

r̂(z) =

p∑
j=0

α̂j(z − x)j, for all z near x,

the regression estimator at point x is then given by

r̂(x) =

p∑
j=0

α̂j(x− x)j = α̂0.

Moreover, the derivative estimator of r(ν)(z) for z near the point x is given by

r̂(ν)(z) =

p∑
j=ν

j(j − 1) · · · (j − ν + 1)!α̂j(z − x)j−ν for ν ≤ p.

Thus, we have the ν-th order derivative estimator at point x

r̂(ν)(x) = ν!α̂ν .

Interestingly, we can obtain r̂(x) and r̂(ν)(x) for 1 ≤ ν ≤ p simultaneously.

Local polynomial smoothing is rather convenient for estimating the r(ν)(x), ν =

0, 1, ..., p, simultaneously. When p = 0, we obtain a local constant estimator, i.e., the

46



Nadaraya-Watson estimator. Obviously, a local polynomial estimator with p > 0 always

has a smaller sum of weighted squared residuals than the local constant estimator,

because for any local polynomial model, one can always simply set all slope coeffi cients

equal to zero. This implies that the sum of weighted squared residuals will never be

larger than that of the local constant estimator.

To compute the local polynomial estimator, one has to choose p, the order of local

polynomial, h, the bandwidth, and K(·), the kernel function. Often, a nonnegative
kernel function K(·) is used, which corresponds to a second order kernel function. The
choices of (p, h) jointly determine the complexity of the local polynomial model. The

choice of h is more important than the choice of p (why?). It has been recommended

that p = ν + 1 if the interest is in estimating r(ν)(x) for 0 ≤ ν ≤ p. When p = 1, it is

a local linear smoother. The choice of h can be based on data-driven methods such as

the cross-validation or plug-in methods.

To obtain the closed form expression for the local weighted least squares estimator

α̂, a (p+ 1)× 1 vector, we put

Zt = Zt(x)

= [1, (Xt − x), (Xt − x)2, ..., (Xt − x)p]′,

a (p+ 1)× 1 polynomial regressor vector, and a weighting function

Wt = Wt(x)

= Kh(x−Xt)

=
1

h
K

(
x−Xt

h

)
.

Then the local sum of squared residuals can be written as

T∑
t=1

[
Yt −

p∑
j=0

αj(Xt − x)j

]2
Kh(x−Xt) =

T∑
t=1

(Yt − α′Zt)2Wt

= (Y − Zα)′W (Y − Zα).

The FOC is
T∑
t=1

ZtWt(Yt − Z ′tα̂) = 0

or equivalently
T∑
t=1

ZtWtYt =

(
T∑
t=1

ZtWtZ
′
t

)
α̂.
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It follows that

α̂ ≡ α̂(x)

=

(
T∑
t=1

ZtWtZ
′
t

)−1 T∑
t=1

ZtWtYt

= (Z ′WZ)−1Z ′WY,

where

W = W (x) = diag(W1, · · ·,WT )

is a T × T diagonal matrix, Z is a T × (p+ 1) matrix, and Y is a T × 1 vector. This is

a local weighted least squares estimator when K(·) has a bounded support [−1, 1].

Question: What are the advantages of using a local polynomial estimator?

3.2.2 Equivalent Kernel

To exploit the advantages of the local polynomial estimator for r(x), we now investigate

its asymptotic properties.

Suppose our interest is in estimating r(ν)(x), where 0 ≤ v ≤ p. Denote eν+1 for the

(p+ 1)× 1 unit vector with 1 at the (ν + 1)-th position and 0 elsewhere. Recalling the

weighting function

Wt = Kh(x−Xt) =
1

h
K

(
x−Xt

h

)
,

we define a j-th order locally weighted sample moment

ŝj = ŝj(x)

=

T∑
t=1

(Xt − x)jKh(Xt − x)

=

T∑
t=1

(Xt − x)jWt, j = 0, 1, ..., p,

and let

Ŝ = Ŝ(x)

= Z ′WZ

=

T∑
t=1

ZtWtZ
′
t

=
[
ŝ(i−1)+(j−1)

]
(i,j)
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be a (p+1)×(p+1) stochastic symmetric matrix, whose (i, j)-th element is ŝ(i−1)+(j−1) =

ŝi+j−2.

Then we have the local weighted least squares estimator

α̂ = Ŝ−1Z ′WY,

and so the ν-th component of α̂ is given by

α̂ν = e′ν+1α̂

= e′ν+1Ŝ
−1Z ′WY

= e′ν+1Ŝ
−1

T∑
t=1

ZtWtYt

=
T∑
t=1

e′ν+1Ŝ
−1


1

(Xt − x)

· · ·
(Xt − x)p

 1

h
K

(
Xt − x
h

)
Yt

=
T∑
t=1

Ŵν

(
Xt − x
h

)
Yt, say,

where the effective kernel Ŵν(·) is the multiplication of the kernel function K(·) with a
polynomial function, namely

Ŵν(u) = e′ν+1Ŝ
−1


1

hu

· · ·
(hu)p

 1

h
K(u)

= e′ν+1Ŝ
−1HP (u)

1

h
K(u),

where

H = diag {1, h, ..., hp}

is a (p+ 1)× (p+ 1) diagonal matrix, and

P (u) = (1, u, ..., up)′

is a (p + 1) × 1 vector of a p-th order polynomial in u. Note that we will make change

of variable u = (Xt − x)/h. Obviously, the local polynomial estimator differs from the

Nadaraya-Watson estimator in using a different weighting function Ŵv(
Xt−x
h

) for {Yt}Tt=1.
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Question: What properties does the effective kernel Ŵν(u) have?

Lemma [Sample Orthogonality between Ŵν(u) and (Xt − x)q]: Let Ŵv(u) be

defined as above. Then

T∑
t=1

Ŵν

(
Xt − x
h

)
(Xt − x)q = δν,q for 0 ≤ ν, q ≤ p,

where δv,q is the Kronecker delta function, namely δν,q = 1 if ν = q and δν,q = 0

otherwise.

The sample orthogonality between Ŵν(u) and (Xt−x)q is very useful in deriving the

bias of the local polynomial estimator α̂ν .

Question: What is the intuition behind this orthonormality?

Proof: Observing (Xt − x)q = Z ′teq+1 and Ŝ = Z ′WZ, we have

T∑
t=1

Ŵν

(
Xt − x
h

)
Z ′teq+1 = e′ν+1Ŝ

−1

(
T∑
t=1

ZtWtZ
′
t

)
eq+1

= e′ν+1Ip+1eq+1

= δνq.

Now, let S be a nonstochastic (p + 1) × (p + 1) matrix whose (i, j)th element S(i,j)
is s(i−1)+(j−1) = si+j−2, where

sj =

∫ 1

−1
ujK(u)du, j = 0, 1, ..., p.

Then

S =

∫ 1

−1
P (u)K(u)P (u)′du.

Next, we define a nonstochastic equivalent kernel function by

K̃ν(u) = e′ν+1S
−1P (u)K(u).

This scalar-valued equivalent kernel K̃(·) has the following properties.

Lemma [Equivalent Kernel]: Suppose {Yt, Xt} is a stationary α-mixing process with
α(j) ≤ C−βj for β > 5

2
, the marginal probability density g(x) of {Xt} is bounded on an

interval [a, b] and has a continuous derivative at point x ∈ [a, b], and the kernel function
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K(·) satisfies a Lipschitz condition. Then
(1) for any given point x in the interior region [a+ h, b− h],

Ŵν(u) =
1

Thν+1g(x)
K̃ν(u) [1 +OP (aT )] ,

where

aT = [ln(T )/Th]1/2 + h.

(2) Moreover, the equivalent kernel K̃ν(·) satisfies the following orthogonality condition∫ 1

−1
uqK̃ν(u)du = δν,q, for 0 ≤ ν, q ≤ p.

This lemma implies that

α̂ν =
T∑
t=1

Ŵν

(
Xt − x
h

)
Yt

=
1

Thν+1g(x)

T∑
t=1

K̃ν

(
Xt − x
h

)
Yt[1 +OP (aT )].

In other words, the local polynomial estimator α̂v works like a kernel regression estimator

but with a known probability density g(x) so that there is no need to estimate g(x). This

explains why the local polynomial estimator adapts to various design densities, including

the boundary region or the region where g′(x) is large in absolute value. Therefore, the

bias due to estimation of unknown density g(x) does not enter the MSE criterion of the

local polynomial estimator. This is the main advantage of the local polynomial estimator

over the Nadaraya-Watson estimator. In particular, it fits well even where g′(x) is large

in absolute value. In the regions where g′(x) is large in absolute value, the standard

Nadaraya-Watson kernel estimator cannot fit well, due to asymmetric data coverage

which yields a large bias. Note that a large value of g′(x) in absolute value implies

that the observations {Xt} will not be covered symmetrically in a small neighborhood
centered at x.

Proof: We first consider the (p+ 1)× (p+ 1) denominator matrix Ŝ = [ŝ(i−1)+(j−1)](i,j),

which is stochastic. Observe that for j = 0, 1, ..., p,

1

Thj
ŝj =

1

T

T∑
t=1

(
Xt − x
h

)j
Kh(x−Xt)
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is like a kernel density estimator with the generalized kernel function ujK(u). Therefore,

we have
1

Thj
ŝj = g(x)sj +OP (aT ), j = 0, 1, ..., p,

where the OP (h) component in

aT = [(1/Th)1/2 lnT + h]

is contributed by the bias term in a first order Taylor series expansion of the integral

E

[(
Xt − x
h

)j
Kh(x−Xt)

]

=

∫ b

a

(
y − x
h

)j
1

h
K

(
x− y
h

)
g(y)dy.

Recall H = diag{1, h, ..., hp} and the (i, j)-th element Ŝ(i,j) = ŝ(i−1)+(j−1). It follows that

1

T
H−1ŜH−1 = g(x)S [1 +OP (aT )]

or equivalently

Ŝ = Tg(x)HSH [1 +OP (aT )] .

Substituting this expression into the definition of the effective kernel Ŵν(u), we

obtain

Ŵν(u) = e′ν+1Ŝ
−1HP (u)

1

h
K(u)

= e′ν+1 {Tg(x)HSH}−1HP (u)
1

h
K(u) [1 +OP (aT )]

=
1

Thν+1g(x)

[
e′ν+1S

−1P (u)K(u)
]

[1 +OP (aT )]

=
1

Thν+1g(x)
K̃ν(u) [1 +OP (aT )] ,

where we have used the fact that e′ν+1H = hνe′ν+1.

The properties for the equivalent kernel K̃ν(u) can be shown in the same way as the

proof of the first part of the lemma for Ŵν(
Xt−x
h

). Observing uq = P (u)′eq+1, we have∫ 1

−1
uqK̃ν(u)du =

∫ 1

−1
K̃ν(u)uqdu

= e′ν+1

[
S−1

∫ 1

−1
P (u)K(u)P (u)′du

]
eq+1

= e′ν+1S
−1Seq+1

= e′ν+1Ip+1eq+1

= δν,q.
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This completes the proof of the second part of the lemma for K̃ν(u).

We note that a similar lemma holds for an equivalent boundary kernel function when

x is not an interior point in [a+h, b−h]. The difference is that the range of the integral

has to be changed from [−1, 1] to [−τ , 1] or [−1, τ ], depending on whether x is in the

left boundary region or the right boundary region.

In other words, the location-dependent weight function Ŵv[(Xt−x)/h] has an equiv-

alent kernel which automatically adapts to the boundary region. See more discussions

below.

3.2.3 Asymptotic Properties of Local Polynomial Estimator

Question: What is the MSE of α̂?

Noting Yt = r(Xt) + εt, we first write the v-th component of α̂,

α̂ν − αν =
T∑
t=1

Ŵν

(
Xt − x
h

)
Yt − αν

=
T∑
t=1

Ŵν

(
Xt − x
h

)
εt +

[
T∑
t=1

Ŵν

(
Xt − x
h

)
r(Xt)− αν

]
= V̂ + B̂, say.

For the first term V̂ , using the formula

Ŝ = Tg(x)HSH[1 +OP (aT )],

which has been proven earlier, we can write

V̂ =

T∑
t=1

Ŵν

(
Xt − x
h

)
εt

= e′ν+1Ŝ
−1Z ′Wε

=
1

Thνg(x)
e′ν+1S

−1H−1Z ′Wε [1 +OP (aT )] ,

where we used the fact that e′ν+1H
−1 = h−νe′ν+1. Furthermore, assuming that {Yt, Xt}
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is IID, we have

E(Z ′Wεε′WZ)

= E

[
T∑
t=1

εtZtKh(Xt − x)

][
T∑
s=1

εsZ
′
sKh(Xs − x)

]

=
T∑
t=1

E
[
ε2tZtK

2
h(Xt − x)Z ′t

]
(by E(εt|Xt) = 0)

= TE
[
ε2tZtK

2
h(Xt − x)Z ′t

]
(by independence)

=
T

h
σ2(x)g(x)HS∗H[1 + o(1)],

by change of variable and continuity of σ2(·), where S∗ is a (p+ 1)× (p+ 1) matrix with

(i, j)-th element

S∗(i,j) = s∗(i−1)+(j−1)

=

∫ 1

−1
u(i−1)+(j−1)K2(u)du.

Note that S∗ 6= S because the integral here is weighted by K2(u) rather than K(u).

It follows that the asymptotic variance of α̂ν ,

avar
(
V̂
)

=
1

Thνg(x)
e′ν+1S

−1H−1E(Z ′Wεε′WZ)H−1S−1
1

Thνg(x)

=
1

Th2ν+1
σ2(x)

g(x)
e′ν+1S

−1S∗S−1eν+1[1 + o(1)]

=
1

Th2ν+1
σ2(x)

g(x)

∫ 1

−1
K̃2(u)du[1 + o(1)]

= O(T−1h−2ν−1),

where, as before, K̃ν(u) = e′ν+1S
−1P (u)K(u) is the equivalent kernel, and∫ 1

−1
K̃2
ν (u)du =

∫ 1

−1
[e′ν+1S

−1P (u)K(u)][K(u)P (u)′S−1eν+1]du

= e′ν+1S
−1
[∫ 1

−1
P (u)K2(u)P (u)′du

]
S−1eν+1

= e′ν+1S
−1S∗S−1eν+1.

Note that this result is obtained under the IID assumption for {Yt, Xt}Tt=1. It still
holds under a suitable mixing condition, using an analogous reasoning to that for the

kernel density estimator ĝ(x).
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Question: How to compute the order of magnitude of the bias B̂?

Taking a Tailor series expansion around a small neighborhood of x, up to order p+1,

namely,

r(Xt) =

p∑
j=0

1

j!
r(j)(x)(Xt − x)j +

1

(p+ 1)!
r(p+1)(x̄t)(Xt − x)p+1

=

p∑
j=0

1

j!
r(j)(x)(Xt − x)j +R(x,Xt),

where x̄t lies in the segment between x and Xt, we have

B̂ =
T∑
t=1

Ŵν

(
Xt − x
h

)
r(Xt)− αν

=

p∑
j=0

1

j!
r(j)(x)

T∑
t=1

Ŵν

(
Xt − x
h

)
(Xt − x)j

− 1

ν!
r(ν)(x)

+
T∑
t=1

Ŵν

(
Xt − x
h

)
R(x,Xt),

where αν = 1
ν!
r(ν)(x), and the reminder

R(x,Xt) =
1

(p+ 1)!
r(p+1)(x̄t)(Xt − x)p+1,

where x̄t = λXt + (1 − λ)x for some λ in [0, 1]. Then using the expression r(Xt) =∑p
j=1 αj(Xt − x)j +R(x,Xt) and the asymptotic equivalence between Ŵν(·) and K̃ν(·),

we have

B̂ =
T∑
t=1

Ŵν

(
Xt − x
h

)
R(x,Xt)

=
1

Thν+1g(x)

T∑
t=1

K̃ν

(
Xt − x
h

)
R(x,Xt) [1 +OP (aT )]

= B̃ [1 +OP (aT )] , say,

by Chebyshev’s inequality.

We now consider B̃. It can be shown that

B̃ − EB̃ =
1

Thν+1g(x)

T∑
t=1

{
K̃ν

(
Xt − x
h

)
R(x,Xt)− E

[
K̃ν

(
Xt − x
h

)
R(x,Xt)

]}
= OP (ln(T )(Th)−1/2h−νhp+1)
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which is a higher order term. (Question: how to show this under the IID assumption

and more generally under a suitable mixing condition on {Yt, Xt}?). Thus, the bias is
determined by

EB̃ =
1

Thν+1g(x)
E

T∑
t=1

K̃ν

(
Xt − x
h

)
R(x,Xt)

=
1

Thν+1g(x)
E

T∑
t=1

K̃ν

(
Xt − x
h

)
r(p+1)(x)

(p+ 1)!
(Xt − x)p+1

+
1

Thν+1g(x)
E

T∑
t=1

K̃ν

(
Xt − x
h

)
[r(p+1)(x̄t)− r(p+1)(x)]

(p+ 1)!
(Xt − x)p+1

=
hp+1

hνg(x)

r(p+1)(x)

(p+ 1)!

∫ 1

−1
up+1K̃ν (u) g(x+ hu)du+O(hp+2−ν)

=
hp+1

hν
1

(p+ 1)!
r(p+1)(x)

∫ 1

−1
up+1K̃ν(u)du+O(hp+2−ν)

=
1

hν
hp+1r(p+1)(x)

(p+ 1)!
e′ν+1S

−1C +O(hp+2−ν),

whereC =
∫ 1
−1 u

p+1P (u)K(u)du is a (p+1)×1 vector with the i-th element
∫ 1
−1 u

(p+1)−(i−1)K(u)du,

and we have made use of the fact that K̃ν(u) = e′ν+1S
−1P (u)K(u).

Question: Why do we have
∫ 1
−1 u

p+1K̃ν(u)du = e′ν+1S
−1C?

Recalling K̃ν(u) = e′ν+1S
−1P (u)K(u), we have∫ 1

−1
up+1K̃ν(u)du = e′ν+1S

−1
∫ 1

−1
up+1P (u)K(u)du

= e′ν+1S
−1C.

It follows that the asymptotic MSE of α̂ν

MSE(α̂ν , αν) =
1

Th2ν+1
σ2(x)

g(x)
e′ν+1S

−1S∗S−1eν+1

+

[
hp+1−νr(p+1)(x)

(p+ 1)!

]2
e′ν+1S

−1CC ′S−1eν+1

=
1

Th2ν+1
σ2(x)

g(x)

∫ 1

−1
K̃2
ν (u)du

+h2(p+1−ν)
[
r(p+1)(x)

(p+ 1)!

]2 [∫ 1

−1
up+1K̃ν(u)du

]2
= O(T−1h−2ν−1 + h2(p+1−ν))

= O(T−1h−1 + h4) if p = 1, ν = 0.
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Therefore, the local WLS estimator α̂v can consistently estimate the Taylor series

expansion coeffi cient αν :

ν!α̂ν →p ν!αν = r(ν)(x) as T →∞.

By minimizing the asymptotic MSE, the optimal convergence rate of α̂v can be

achieved by choosing the bandwidth

h∗ ∝ T−
1

2p+3 .

Interestingly, the optimal bandwidth h∗ does not depend on the order of the derivative

ν. We are using the same h in estimating all {αν}pν=0. Of course, the proportionality
still depends on ν.

The intuitive idea of local polynomial smoothing in econometrics can be dated back

to Nerlove (1966), where he uses a piecewise linear regression to estimate a nonlinear cost

function for the electricity industry. White (1980, International Economic Review) also

has a closely related discussion. He shows that the OLS estimators that are based on the

whole sample are not estimating the derivative coeffi cients in a Taylor series expansion

model, unless the regression function E(Yt|Xt) is a linear function of Xt. White (1980)

discusses the case of OLS estimation over the entire support of Xt. Apparently, the

OLS estimator can consistently estimate the regression function and its derivaties when

a small neighborhood is considered. This is exactly the idea behind local polynomial

smoothing.

Next, we use the central limit theory to derive the asymptotic distribution of α̂v.

Theorem [Asymptotic Normality]: If h = O(T−1/(2p+3)) and r(p+1)(x) is continuous,

then as T →∞,
√
Th

[
H(α̂− α)− hp+1r(p+1)(x)

(p+ 1)!
S−1C

]
→d N

(
0,
σ2(x)

g(x)
S−1S∗S−1

)
,

where α = [r(x), r(1)(x), ..., r(p)(x)/p!]′. Therefore,

√
Th2ν+1

[
r̂(ν)(x)− r(ν)(x)− hp+1−νr(p+1)(x)

(p+ 1)!

∫ 1

−1
up+1K̃ν(u)du

]
→ dN

(
0,

(ν!)2σ2(x)

g(x)

∫ 1

−1
K̃2
ν (u)du

)
.
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3.2.4 Boundary Behavior of Local Polynomial Estimator

Question: The above asymptotic results, namely MSE and asymptotic normality, hold

for x in the interior region, i.e., x ∈ [a+ h, b− h].What happens if x is in the boundary

region?

For simplicity, we assume [a, b] = [0, 1] and consider a left boundary point x = τh

for τ ∈ [0, 1]. Then following reasoning analogous to what we have done for an interior

point, we can obtain

MSE[α̂ν(τh)] = E [α̂ν(τh)− αν(0)]2

=
1

Th2ν+1
σ2(0)

g(0)
e′ν+1S

−1
τ S∗τS

−1
τ eν+1

+

[
hp+1−νr(p+1)(0)

(p+ 1)!

]2
e′ν+1S

−1
τ CτC

′
τS
−1
τ eν+1,

where Sτ , S∗τ and Cτ are defined in the same way as S, S
∗ and C, with the lower bounds of

all integrals involved being changed from −1 to −τ . For example, Sτ is a (p+1)× (p+1)

matrix, with its (i, j)-th element equal to

s(i−1)+(j−1),τ =

∫ 1

−τ
u(i−1)+(j−1)K(u)du.

Interestingly, the bias of α̂ν(x) is of the same order of magnitude no matter whether

x is in the interior region or in the boundary region of [a, b] = [0, 1]. Of course, the

proportionality does depend on the location of x, namely τ if x is in the boundary region.

Thus, the local polynomial estimator automatically adapts to the boundary region and

does not suffer from the boundary bias problem as the standard kernel method.

Question: What is the intuition behind this? Why does the local polynomial regression

estimator behave differently from the Nadaraya-Watson regression estimator? The latter

has a bias equal to O(h) in the boundary region.

We consider the local linear estimator (i.e., p = 1) as an example. The key here is the

joint use of the local intercept and local slope. The latter provides flexibility to adapt

to asymmetric data coverage such as those in the boundary regions, as is illustrated in

Figure xxx. As a result, the bias of the local linear estimator in the boundary region is

much smaller than without using a slope parameter.
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An alternative interpretation is that the local polynomial estimator is equivalent to

a kernel estimator but with a known density g(x), even when x is in the boundary

region. Thus, the boundary bias due to density estimation does not arise for the local

polynomial estimator.

We can also obtain an analogous asymptotic normality for α̂ν(τh) in the boundary

region.

Theorem [Asymptotic Normality]: Suppose h = O(T−1/(2p+3)) and r(p+1)(x) is

continuous. Then as T →∞,

√
Th

[
H[α̂(τh)− α(0)]− hp+1r(p+1)(0)

(p+ 1)!
S−1τ Cτ

]
→d N

(
0,
σ2(0)

g(0)
S−1τ S∗τS

−1
τ

)
,

where

α(0) = [r(0), r(1)(0), ..., r(p)(0)/p!]′.

Therefore, as T →∞,

√
Th2ν+1

[
r̂(ν)(τh)− r(ν)(0)− hp+1−νr(p+1)(0)

(p+ 1)!

∫ 1

−τ
up+1K̃ν,τ (u)du

]
→ dN

(
0,

(ν!)2σ2(0)

g(0)

∫ 1

−τ
K̃2
ν,τ (u)du

)
,

where the equivalent boundary kernel

K̃ν,τ (u) = e′ν+1S
−1
τ P (u)K(u).

Proof: The proof is similar to the derivation of the asymptotic MSE for the local

polynomial estimator in the interior region.

Question: Why is the local polynomial estimator useful in economic applications?

First of all, it avoids the well-known boundary problem in smoothed kernel regression

estimation. Second, it has a smaller bias term for the regression estimator in the areas

where the marginal density g(x) ofXt is a steep slope (i.e., when g′(x) is large in absolute

value), and consequently is more effi cient than the Nadaraya-Watson estimator. A steep

slope of g(x) means that the observations will be asymmetrically distributed around x.

Smoothed nonparametric regression estimators have been widely used in economet-

rics and economics. For example,
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• Ait-Sahalia and Lo (1998, Journal of Finance) use a multivariate kernel-based
regression estimator to estimate the option pricing function

Gt = G(Xt, Pt, τ t, rt,m)

= exp[−rt,m(m− t)]
∫ ∞
−∞

Y (pt, Xt)f
∗
t (Pm;T )dpt,

where Xt is the strike price at time t, Pt is the price of the underlying asset at

time t, m is the length of maturity of the option, and rt,m is the riskfree rate at

time t with maturity m.

They then use
∂2Ĝt

∂2Xt

= exp[−rt,t(T − t)]f̂ ∗(Pt)

to obtain the risk-neutral probability density estimator f̂ ∗(Pt), which contains rich

information about investor preferences and dynamics of data generating process.

• Aït-Sahalia (1996), Stanton (1997), and Chapman and Pearson (1999) use the
Nadaraya-Watson estimator r̂(Xt−1) to estimate E(Xt|Xt−1), where Xt is the spot

interest rate, and examine whether the the drift function µ(Xt) in the diffusion

model

dXt = µ(Xt)dt+ σ(Xt)dWt,

is linear or nonlinear.

There are many potential topics in time series econometrics that can apply smoothed

nonparametric regression estimators. Below are some examples.

Example 1 [Time-Varying CAPM]:Consider a Capital Asset PricingModel (CAPM)

with time-varying parameters:

Xit = αi(It−1) + βi(It−1)
′λt + εit, i = 1, ..., n, t = 1, ..., T,

where

E(εit|It−1) = 0.

This is related to the debate about constant betas versus nonconstant betas. From the

Euler equation,

αit = αi(It−1), βit = βi(It−1),
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are possibly time-varying coeffi cients. Suppose αit = αi(Zt) and βit = βi(Zt), where

Zt is some state variable or vector in It−1 but the functional forms αi(·) and βi(·) are
unknown. Then one can estimate αi(·) and βi(·) by solving the local sum of squared

residuals minimization problem

min
{αi(·),βi(·)}

n∑
i=1

T∑
t=1

[Xit − αi(Zt)− βi(Zt)′λt]2Kh(z − Zt)

Question: What is the economic rationale that αit and βit are time-varying?

Kevin Wang (2002, Journal of Finance), Ang and Kristense (2012, Journal of Finan-

cial Economics), and Li and Yang (2012, Journal of Empirical Finance) all consider

time-varying betas by assuming that the time-varying betas are unknown functions of

economic variables or time.

Example 2 [Time-varying Risk Aversion and Equity Risk Premium Puzzle]:

Suppose a representative economic agent is solving the lifetime utility maximization

problem

max
{Ct}

E

[ ∞∑
j=0

βjU(Ct+j)

∣∣∣∣∣ It
]

subject to the intertemporal budget constraint

Ct = Pt(At+1 − At) ≤ Yt +DtAt,

where Ct is the consumption, At is a financial asset, Yt is the labor income, Dt is the

dividends on the asset, and Pt is the price of asset.

The Euler equation for this maximization problem is

E

[
β

(
U ′(Ct+1)

U ′(Ct)

)(
Pt+1 +Dt+1

Pt

)
− 1

∣∣∣∣ It] = 0,

where (Pt+1 +Dt+1)/Pt is the gross return on the asset in percentage, βU ′(Ct+1)/U ′(Ct)

is the intertemporal marginal rate of substitution, also called the stochastic discount

factor. The latter is the time-discounted risk attitude of the representative economic

agent.

Suppose the utility function U(·) of the representative economic agent is

U(Ct) =
C1−γt − 1

1− γ , for γ > 0.
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This is the so-called Constant Relative Risk Aversion (CRRA) utility function. The

parameter γ is a measure of the degree of risk aversion. The larger γ, the more risk

averse the economic agent.

With the CRRA utility function, the Euler equation becomes

E

[
β

(
Ct+1
Ct

)−γ (
Pt+1 +Dt+1

Pt

)
− 1

∣∣∣∣∣ It
]

= 0.

The unknown parameters β and γ can be estimated using the generalized method of

moments. The empirical estimate for γ is too small to justify the observed relatively

large difference between stock returns and bond returns. This diffi culty is called an

“equity risk premium puzzle.”

The equity risk premium puzzle exists because the excess of stock returns over re-

turns on investments in bonds is larger than could be explained by standard models of

“rational asset”prices. This was first proposed by Mehra and Prescott (1985, “The Eq-

uity Premium Puzzle,”Journal of Monetary Economics 15). Since then, various efforts

have been made to explain this puzzle.

Among many other things, a possible solution is to assume both structural parame-

ters β and γ are time-varying, namely βt = β(It−1) and γt = γ(It−1), where It−1 is the

information set available at time t−1. More specifically, we can assume that βt = β(Xt)

and γt = γ(Xt) for some unknown smooth functions β(·) and γ(·), where Xt ∈ It−1 is
a state vector that is expected to affect both βt and γt. These time-varying functions

can reveal useful information about how the risk attitude of the economic agent changes

with the state variables Xt.

Question: How to estimate β(·) and γ(·)?

Recall that the Euler equation is a conditional moment specification, which can be

equivalently converted into a generalized regression model:

β(Xt)

(
Ct+1
Ct

)−γ(Xt)(Pt+1 +Dt+1

Pt

)
= 1 + εt+1,

where εt+1 is a stochastic pricing error satisfying the MDS property

E(εt+1|It) = 0.
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As a result, we can estimate the unknown functions β(·) and γ(·) using minimizing
the following local sum of squared generalized residuals:

min
β(·),γ(·)

T∑
t=1

[
β(Xt)

(
Ct+1
Ct

)−γ(Xt)(Pt+1 +Dt+1

Pt

)
− 1

]2
Kh

(
x−Xt

h

)
where β(x) and γ(x) will be estimated by some low-order local polynomial estimators,

such as local linear estimators.

More generally, one can incorporate the Euler equations into a time-varying GMM

framework

E

{
Zt

[
β(Xt)

(
Ct+1
Ct

)−γ(Xt)(Pt+1 +Dt+1

Pt

)
− 1

]}
= 0,

where Zt is a set of instrumental variables. By approximating β(x) and γ(x) using a

local polynomial respectively, we can obtain local polynomial GMM estimators for β(x)

and γ(x) by minimizing a local quadratic form of the sample moment.

Example 3 [Functional-Coeffi cient Autoregressive Model]: Suppose {Xt} is a
strictly stationary time series process and follows a generalized AR(p) process:

E(Xt|It−1) =

p∑
j=1

αj(Xt−d)Xt−j,

where the autoregressive coeffi cient αj(Xt−d) is a function of Xt−d, and the functional

form αj(·) is unknown. The lag order d is called a delay parameter.

Example 4 [Volatility Smile and Derivatives Pricing]: To derive the price of a

European call option, Black and Scholes (1973) impose the following assumptions:

• (A1): d lnSt = µdt + σdWt, where Wt is the Brownian motion, and St is the

underlying stock price;

• (A2): Frictionless and complete market (no transaction costs; short sales allowed);

• (A3): Constant riskfree interest rate r;

• (A4): European call option, whose payoff function is given by

φ(St) = max(St −K, 0),

where K is the strike price.
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Based on a no-arbitrage argument, the following European call option price can be

derived:

πt = S0Φ(d)−Ke−rtΦ(d− σ
√
t),

where t = m− τ t, m is the maturity period, and

d =
ln(S0/Ke

−rt)

σ
√
t

+
1

2
σ
√
τ .

From the Black-Scholes formula, we can inversely derive the volatility

σ2t = σ2(Kt, St, rt, τ t, πt).

This is called the implied volatility. If the pricing formula is correct, then the implied

volatility σ2t is a constant function of strike price Kt. This is because σ2t depends only on

the data generating process and should not depend on the strike price in any manner.

In contrast, if the pricing is incorrect (e.g., the lognormality assumption cannot capture

heavy tails of the asset price distribution), then σ2t is generally a convex function of

strike price Kt. This is called a volatility smile.

Question: Is the concept of volatility smile well-defined when the distribution of the

underlying asset is non-Gaussian (i.e., not lognormal)?

3.2.5 Curse of Dimensionality and Dimension Reduction

Like in multivariate probability density estimation, we will also encounter the curse of

dimensionality for regression estimation, when the dimension d of the regressor vector

Xt is high. Again, some simplifying assumptions can be made to reduce the curse of

dimensionality. Some restrictions on the unknown functions of interest may come from

economic theory. For example, a demand function must satisfy the property of a homo-

geneous function of degree zero. Below are a few examples often used in econometrics

and time series econometrics:

Example [Single Index Model]:

Yt = m(X ′tβ
0) + εt,

where E(εt|Xt) = 0, the linear combination X ′tβ
0 is a scalar variable, and the functional

form m(·) is unknown. Often, the interest is inference of unknown parameter β0. See
Stoker (1986) for more discussion.
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Example [Partially Linear Regression Model]:

Yt = X ′tβ
0 +m(Zt) + εt,

where E(εt|Xt, Zt) = 0, and m(·) is an unknown function of Zt only. Here, the interest
is inference of the marginal effect of the economic variables Xt. However, one has to con-

sistently estimate the unknown function m(Zt) in order to obtain consistent estimation

of parameter β0.

Example [Functional Coeffi cient Model]:

Yt = X ′tβ(Zt) + εt,

where E(εt|Xt, Zt) = 0, and the parameter vector β(·) is an unknown function of Zt
only.

Example [Additive Nonlinear Autoregressive Model]:

Xt =

p∑
j=1

αj(Xt−j) + εt,

where the αj(·) functions are unknown.

4 Nonparametric Estimation of Time-Varying Mod-

els

In this section, we consider smoothed nonparametric estimation of time-varying models,

where model parameters are deterministic functions of time. For simplicity, we focus on

estimating a known time trend function in a time series process.

4.1 Slow-Varying Time Trend Estimation

Suppose we observe a bivariate time series random sample {Yt, Xt}Tt=1 of size T, where

Yt = m (t/T ) +Xt, t = 1, ..., T,

wherem(·) is a smooth but unknown time-trend function and {Xt} is a strictly stationary
process with E(Xt) = 0 and autocovariance function γ(j) = cov(Xt, Xt−j). Because the

mean of Yt is changing over time, {Yt} is nonstationary.
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Question: Why is the trend function m(·) assumed to be a function of normalized time
t/T rather than time t only?

This is a crucial device for consistent estimation of the trend function m(·) as the
sample size T → ∞. Suppose m(·) is a function of time t only, then when sample size
T increases, new information about future times becomes available, but the information

about the function m(·) around a given time point, say, t0, does not increase. Therefore,
it is impossible to obtain a consistent estimation of m(t0). In contrast, with m(t0/T ) as

a function of t0/T, more and more information about m(·) in a neighborhood of t0/T
will become available when T increases, which ensures consistent estimation of m(t0/T ).

Question: How to estimate the time trend function m(t/T )?

We can separate the smooth trend from the stochastic component with smoothed

nonparametric estimation.

Suppose m(·) is continuously differentiable on [0, 1] up to order p, and we are inter-

ested in estimating the function m(t0/T ) at a time point t0 such that t0/T → τ 0 ∈ [0, 1],

where τ 0 is a fixed point. Then by a Taylor series expansion, we have, for all t such that

t/T lies in a neighborhood of τ 0 = t0/T,

m(t/T ) =

p∑
j=0

1

ν!
m(ν)(τ 0)

(
t− t0
T

)j
+

1

(p+ 1)!
m(p+1)(τ̄ t)

(
t− t0
T

)p+1
,

where τ̄ t lies in the segment between τ 0 and t/T. Thus, we consider local polynomial

smoothing by solving the local weighted sum of squared residuals minimization problem

min
α

T∑
t=1

[
Yt −

p∑
j=0

αj

(
t− t0
T

)j]2
Kh

(
t− t0
T

)
=

T∑
t=1

(Yt − α′Zt)2Wt,

where α = (α0, α1, ..., αp)
′,

Zt =

[
1,

(
t− t0
T

)
, ...,

(
t− t0
T

)p]′
,

and

Wt ≡ Kh

(
t− t0
T

)
=

1

h
K

(
t− t0
Th

)
.

Then the solution for α is

α̂ =

(
T∑
t=1

ZtWtZ
′
t

)−1 T∑
t=1

ZtWtYt

= (Z ′WZ)−1Z ′WY.
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In particular, we have

α̂ν = e′ν+1α̂, 0 ≤ ν ≤ p,

where eν+1 is a (p+ 1)× 1 unit vector with the ν + 1 element being unity and all others

being zero.

Question: What are the asymptotic properties of α̂ν for 0 ≤ ν ≤ p?

We first derive the asymptotic MSE of α̂ν .Put

Ŝ = Z ′WZ ′,

a nonstochastic (p+ 1)× (p+ 1) matrix, whose (i, j)-element is

Ŝ(i,j) =
T∑
t=1

(
t− t0
T

)(i−1)+(j−1)
Kh (t− t0) .

We first decompose

α̂ν − αν = e′ν+1Ŝ
−1

T∑
t=1

ZtWtXt

+e′ν+1Ŝ
−1

T∑
t=1

ZtWtm

(
t

T

)
− αν

= V̂ + B̂, say.

For the first term, we have E(V̂ ) = 0 given E(Xt) = 0, and

var
(
V̂
)

= E
(
e′ν+1Ŝ

−1Z ′WXX ′WZŜ−1eν+1

)
= e′ν+1Ŝ

−1Z ′WE (X ′X)WZŜ−1eν+1

= e′ν+1Ŝ
−1

[
T∑
t=1

T∑
s=1

ZtWtγ(t− s)Z ′sWs

]
Ŝ−1eν+1

= e′ν+1Ŝ
−1

[
T−1∑
j=1−T

(
1− |j|

T

)
γ(j)

T∑
t=1

ZtWtZ
′
t−jWt−j

]
Ŝ−1eν+1.

By approximating the discrete sum with a continuous integral, we have

1

Th

T∑
t=1

(
t− t0
Th

)j
K

(
t− t0
Th

)
→
∫ 1

−1
ujK(u)du for 0 ≤ j ≤ 2p− 1

as h→ 0, Th→∞. It follows that
1

T
H−1ŜH−1 = S [1 + o(1)] ,
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where, as before, S is a (p + 1) × (p + 1) matrix with its (i, j)-th element being∫ 1
−1 u

(i−1)+(j−1)K(u)du. Also, for each given j, by approximating the discrete sum with

a continuous integral, we have

1

Th

T∑
t=1

(
t− t0
Th

)m(
t− t0 − j

Th

)l
K

(
t− t0
Th

)
K

(
t− t0 − j

Th

)
→
∫ 1

−1
um+lK2(u)du

as h→ 0, Th→∞. Therefore, for any given lah order j, we obtain

1

T
H−1

(
T∑
t=1

ZtWtZ
′
t−jWt−j

)
H−1 = h−1S∗[1 + o(1)],

where S∗ is a (p+1)×(p+1) matrix with its (i, j) element being
∫ 1
−1 u

(i−1)+(j−1)K2(u)du.

It follows that

var
(
V̂
)

=
1

Th
H−1S−1S∗S−1H−1

[ ∞∑
j=−∞

γ(j)

]
[1 + o(1)]

=
1

Th2ν+1
e′ν+1S

−1S∗S−1eν+1

[ ∞∑
j=−∞

γ(j)

]
[1 + o(1)] .

Unlike the estimator for the regression function r(Xt), the asymptotic variance of the

local polynomial estimator m̂(t0/T ) = α̂0 depends on the long-run variance of {Xt}.
In other words, the serial dependence in {Xt} has impact on the asymptotic variance
of the local polynomial estimator α̂0. More specifically, whether {Xt} is IID or serially
dependent has an important impact on the asymptotic variance of α̂ν = 1

ν!
m̂(ν)(t0/T ).

Question: Why?

The local polynomial estimator for m(t0/T ) is based on the observations in the local

interval [ t0
T
− h, t0

T
+ h]. These observations are conservative observations over time in

an interval [t0 − Th, t0 + Th], whose width, equal to 2Th, is increasing but at a slower

rate than sample size T. Thus, it maintains the same pattern of serial dependence as

the original time series {Xt}. As a result, the asymptotic variance of α̂0 will depend
on the long-run variance of {Xt}. In contrast, the local polynomial estimator r̂(x) for

the regression function r(x) = E(Yt|Xt = x) is based on the observations in a small

interval [x − h, x + h]. The observations that fall into this small interval are generally

not conservative over time, so their serial dependence structure has been destroyed, and

they appear like an IID sequence.
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Next, to obtain the bias of m̂(t0/T ), where t0 ∈ [Th, T −Th], using the Taylor series

expansion,

m(t/T ) =

p∑
j=0

1

j!
m(j)(

t0
T

)

(
t− t0
T

)j
+

1

(p+ 1)!
m(p+1)(

t̄

T
)

(
t− t0
T

)p+1
,

where t̄ = λt+ (1− λ)t0, we have

B̂ = e′ν+1Ŝ
−1

T∑
t=1

ZtWtm

(
t

T

)
− αν

=
1

(p+ 1)!
e′ν+1Ŝ

−1
T∑
t=1

ZtWh

(
t− t0
T

)p+1
m(p+1)

(
t̄

T

)

=
hp+1

(p+ 1)!
e′ν+1H

−1
(
H−1ŜH−1

)−1
H−1

T∑
t=1

ZtWh

(
t− t0
Th

)p+1
m(p+1)

(
t̄

T

)
=

hp+1−νm(p+1)( t0
T

)

(p+ 1)!
e′ν+1S

−1C [1 + o(1)] ,

where C is a (p+ 1)×1 vector with the i-th element being
∫ 1
−1 u

(p+1)−(i−1)K(u)du. Here,

we have used a continuous integral to approximate a discrete sum:

1

Th

T∑
t=1

(
t− t0
Th

)j
K

(
t− t0
Th

)
→
∫ 1

−1
ujK(u)du

as T →∞. It follows that the asymptotic MSE of α̂ν is

MSE(α̂ν) =
1

Th2ν+1
e′ν+1S

−1S∗S−1eν+1

∞∑
j=−∞

γ(j)

+h2(p+1−ν)

[
m(p+1)

(
t0
T

)
(p+ 1)!

]2 (
e′ν+1S

−1C
)2

+o(T−1h−2ν−1 + h2(p+1−ν)).

Next, we derive the asymptotic distribution of m̂(t0/T ).

Next, we use the central limit theorem to derive the asymptotic distribution of

m̂(t0/T ).

Theorem [Asymptotic Normality of m̂(t0/T )]: If h = O(T−1/(2p+3)) andm(p+1)(t0/T )

is continuous, where t0 ∈ [Th, T − Th], then as T →∞,
√
Th

[
H[α̂(t0/T )− α(t0/T )]− hp+1m(p+1)(t0/T )

(p+ 1)!
S−1C

]
→ dN

(
0, S−1S∗S−1

∞∑
j=−∞

γ(j)

)
,
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where

α(0) = [r(0), r(1)(0), ..., r(p)(0)/p!]′.

Therefore,

√
Th2ν+1

[
m̂(ν)(t0/T )−m(ν)(t0/T )− hp+1−νm(p+1)(t0/T )

(p+ 1)!

∫ 1

−1
up+1K∗ν (u)du

]
→ dN

(
0, (ν!)2

∫ 1

−1
K̃2(u)du

∞∑
j=−∞

γ(j)

)
.

Similar results for the asymptotic MSE and asymptotic normality of the local poly-

nomial trend estimator for t0 in the boundary region [1, Th) or (T − Th, T ] could also

be obtained. We omit them for space.

4.2 Locally Linear Time-Varying Regression Estimation

Question: How to model smooth time changes in economics?

We consider a locally linear time-varying regression model

Yt = X ′tα

(
t

T

)
+ εt, t = 1, ..., T,

where Yt is a scalar, Xt is a d× 1 random vector, and α(t/T ) is a d× 1 smooth function

of normalized time t/T. The time-trend time series model can be viewed as a special

case of this locally linear time-varying regression model with Xt = 1.

Question: Why to consider smooth changes in a regression model?

Structural changes are rather a rule than an exception, due to advances in technology,

changes in preferences, policy shifts, and institutional changes in the economic system.

It takes time for economic agents to react to sudden shocks, because it takes time

for economic agents to collect information needed for making decisions, it takes time for

markets to reach some consensus due to heterogenous beliefs, it takes time for economic

agents to change their habits, etc. Even if individual agents can respond immediately

to sudden changes, the aggregated economic variables (such as consumption) over many

individuals will become smooth. Indeed, as Alfred Marshall points out, economic changes

are evolutionary.

The locally linear time-varying regression model is potentially useful for macroeco-

nomic applications and for long time series data.
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Question: How to estimate the d× 1 time-varying parameter vector α(t/T )?

Suppose α(t/T ) is continuously differentiable up to order p+ 1, and t0 is a specified

time point such that t0/T converges τ 0 in [0, 1]. Then by a Taylor series expansion, we

have that for all t such that t/T is in a small neighborhoo of t0/T,

α

(
t

T

)
=

p∑
j=0

1

j!
α(j)

(
t0
T

)(
t− t0
T

)j
+

1

(p+ 1)!
α(p+1)

(
t̄

T

)(
t− t0
T

)p+1
,

where t̄ lies in the segment between t and t0. Precisely, α(p+1) (t̄/T ) should be understood

as being evaluated at a different t̄ for a different component of the d× 1 vector α(p+1)(·).
Therefore, we can use a p-th order polynomial to approximate the unknown vector

function α(t/T ) in the neighbood of t0/T. Put

Zt =

[
1,
t− t0
T

, ...,

(
t− t0
T

)p]′
and

Qt = Zt ⊗Xt

is a d(p + 1) × 1 vector of augmented regressors, where ⊗ is the Konecker product.

Then we consider the following locally weighted sum of squared residuals minimization

problem

T∑
t=1

(
Yt −

d∑
l=1

α′ltXlt

)2
Kh(t− t0)

=

T∑
t=1

(
Yt −

d∑
l=1

α′lZtXlt

)2
Kh(t− t0)

=

T∑
t=1

[Yt − α′(Zt ⊗Xt)]
2
Kh(t− t0)

=

T∑
t=1

(Yt − α′Qt)
2
Kh(t− t0),

where α = (α′1, ..., α
′
d)
′ is a d(p + 1) × 1 vector, with αl being a (p + 1) × 1 coeffi cient

vector for the product regressor vector ZtXlt.
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The local polynomial estimator

α̂ =

(
T∑
t=1

QtWtQ
′
t

)−1 T∑
t=1

QtWtYt

=

[
T∑
t=1

(Zt ⊗Xt)Wt (Zt ⊗Xt)
′

]−1 T∑
t=1

(Zt ⊗Xt)WtYt.

The estimator for the d× 1 vector α(t0/T ) is then given by

α̂(t0/T ) = (Id ⊗ e1)′α̂,

where Id is a d× d identity matrix and e1 is a (p+ 1)× 1 vector with unity for the first

component equal to 1 and all the other components equal to zero. Intuitively, α̂(t0/T )

is a d × 1 vector consisting of the d estimated intercepts from {α̂l}dl=1, where α̂l is a
(p+ 1)× 1 estimated coeffi cient vector for ZtXlt.

We could derive the asymptotic MSE formula for α̂(t0/T ), and their asymptotic

normal distributions.

Theorem [Asymptotic MSE]: Suppose {X ′t, εt}′ is a strictly stationary α-mixing

process with γ(j) = cov(εt, εt−j) and Q = E(XtX
′
t), and {Xt} and {εt} are mutually

independent. Then for any given t0/T in the interior region of [0, 1], the asymptotic MSE

of each component of the d × 1 vector α̂(t0/T ) = (Id ⊗ e1)′α̂, where α̂ = (α̂′1, ..., α̂
′
d)
′ is

the local weighted least squares estimator, is given by

MSE [α̂l (t0/T ) , αl(t0/T )] =
1

Th

[ ∞∑
j=−∞

γ(j)

]
(Id ⊗ e1)′ (Q⊗ S)−1 (Q⊗ S∗) (Q⊗ S)−1 (Id ⊗ e1)

+

[
hp+1α

(p+1)
l (t0/T )

(p+ 1)!

]2
(Id ⊗ e1)′ (Q⊗ S)−1 (Q⊗ C) (Q⊗ C)′ (Q⊗ S)−1 (Id ⊗ e1)

+o(T−1h−1 + h2(p+1))

=
1

Th

[ ∞∑
j=−∞

γ(j)

]∫ 1

−1
K̃2
0(u)du

+h2(p+1)

[
α
(p+1)
l (t0/T )

(p+ 1)!

]2 [∫ 1

−1
up+1K̃0(u)du

]2
+o(T−1h−1 + h2(p+1)),
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where the equivalent kernel is defined as

K̃0(u) = (Id ⊗ e1)′ (Q⊗ S)−1 [Q⊗ P (u)]K(u).

By minimizing the asymptotic MSE, the optimal convergence rate of each component

of α̂(t0/T ) can be obtained by choosing the bandwidth

h∗ ∝ T−
1

2p+3 .

Theorem [Asymptotic Normality of α̂(t0/T )]: If h = O(T−1/(2p+3)) and α(p+1)(t0/T )

is continuous, where t0 ∈ [Th, T − Th], then for l = 1, ..., d, as T →∞,

√
Th

[
α̂l(t0/T )− αl(t0/T )]− hp+1α

(p+1)
l (t0/T )

(p+ 1)!
(Q⊗ S)−1 (Q⊗ C)

]

→ dN

(
0, (Q⊗ S)−1(Q⊗ S∗)(Q⊗ S)−1

∞∑
j=−∞

γ(j)

)
.

Similar results of the asymptotic MSE and asymptotic normality for α̂(t0/T ) can be

obtained when the normalized time time t0
T
is in the left boundary region [0, h] or the

right boundary region [1− h, 1].

By plotting the estimator α̂(t0/T ) as a function of t0/T in the interval [0, 1], we can

examine whether the coeffi cient vector α is time-varying. Formally, Chen and Hong

(2012) propose some consistent tests for smooth structural changes as well as a finite

number of multiple breaks in a linear regression model by using a local linear estimator

for the time-varying coeffi cient α(·). Specifically, they propose a generalized Chow (1960)
test, which is a generalized F -test by comparing the sum of squared residuals of a local

linear regression model with that of a constant parameter regression model. They also

propose a generalized Hausman (1978) type test by comparing the fitted values of a

local linear estimator with those of a constant parameter regression model. Chen and

Hong (2012) derive the asymptotic null distribution of these test statistics under the

null hypothesis of no structural change and establish consistency of these tests under

the alternative hypothesis. See Chen and Hong (2012) for more discussion, including a

simulation study and an empirical application.

Chen and Hong (2016) also propose a local smoothing quasi-likelihood based test for

parameter constancy of a GARCH model.
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5 Nonparametric Estimation in Fre-

quency Domain
Questions: Given a time series random sample {Xt}Tt=1 of size T,

• How to estimate the power spectral density h(ω) of {Xt}?

• How to estimate the bispectral density b(ω1, ω2) of {Xt}?

• How to estimate the generalized spectral density f(ω, u, v) of {Xt}?

5.1 Sample Periodogram

Suppose {Xt} is a weakly stationary time series with autocovariance function γ(j) and

the spectral density function h(ω). For simplicity, we assume E(Xt) = 0 and we know

it. Then we can estimate γ(j) the sample autocovariance function

γ̂(j) = T−1
T∑

t=|j|+1

XtXt−|j|, j = 0,±1, ...,±(T − 1).

If µ is unknown, we should use the sample autocovariance function

γ̂(j) = T−1
t∑

t=|j|+1

(Xt − X̄)(Xt−|j| − X̄),

where X̄ is the sample mean. The asymptotic analysis is a bit more tedious but the

same results can be obtained since the replacement of µ by X̄ has no impact on the

asymptotic results below.

In this section, our interest is in consistent estimation of the spectral density function

h(ω) based on an observed random sample {Xt}Tt=1. Recall the spectral density function
is

h(ω) =
1

2π

∞∑
j=−∞

γ(j)e−ijω.

For a WN(0, σ2) process, the spectral density

h(ω) =
1

2π
γ(0), ω ∈ [−π, π],
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where γ(0) = var(Xt). In this case, a spectral density estimator is

ĥ(ω) =
1

2π
γ̂(0).

For an MA(1) process, the spectral density

h(ω) =
1

2π
γ(0) +

1

π
γ(1) cos(ω).

The corresponding spectral estimator is

ĥ(ω) =
1

2π
γ̂(0) +

1

π
γ̂(1) cos(ω).

For an ARMA(p, q) process, the spectral density function

h(ω) =
σ2

2π

∣∣∣∣∣ 1 +
∑q

j=1 θje
−ijω

1−
∑p

j=1 φje
−ijω

∣∣∣∣∣
2

,

where σ2 = E(ε2t ) is the variance of innovation εt.

A spectral density estimator is

ĥ(ω) =
σ̂2

2π

∣∣∣∣∣ 1 +
∑q

j=1 θ̂je
−ijω

1−
∑p

j=1 φ̂je
−ijω

∣∣∣∣∣
2

where (θ̂j, φ̂j) are consistent parameter estimators, and

σ̂2 =
1

T

T∑
t=max(p,q)+1

ε̂2t ,

where

ε̂t = Xt −
p∑
j=1

φ̂jXt−j −
q∑
j=1

θ̂j ε̂t−j,

with the initial values ε̂t = 0 for all t ≤ 0.

For a general linear process (or when we do not know what process Xt is), we may

like to use the sample periodogram as a spectral density estimator:

Î(ω) =
1

2πT

∣∣∣∣∣
T∑
t=1

Xte
itω

∣∣∣∣∣
2

=
1

2π

T−1∑
j=1−T

(
1− |j|

T

)
γ̂(j)e−ijω

=
1

2π
γ̂(0) +

1

π

T−1∑
j=1

(
1− j

T

)
γ̂(j) cos(jω).
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The sample periodogram Î(ω), based on the time series random sample {Xt}Tt=1, is
the squared modulus of the discrete Fourier transform of {Xt}Tt=1.

Unfortunately, this sample periodogram Î(ω) is not consistent for the spectral density

h(ω). Why?

To explain, let us consider the simplest case when {Xt} is IID. Then we have h(ω) =
1
2π
γ(0), and

EÎ(ω) =
1

2π
γ(0) = h(ω)

so the bias E[Î(ω)]− h(ω) = 0 for all ω ∈ [−π, π].

On the other hand, under the IID condition, we have

cov[
√
T γ̂(i),

√
T γ̂(j)] =

{
(1− |i|/T )γ2(0) if i = j,

0 if i 6= j.

It follows that

var[Î(ω)] =
1

(2π)2
var[γ̂(0)]

+
1

(π)2

T−1∑
j=1

(
1− j

T

)2
var[γ̂(j)] cos2(jω)

= C0
1

T
+ C1

1

T

T−1∑
j=1

(
1− j

T

)2
cos2(jω)

≤ C0
1

T
+ C1 ·

1

2
= O(1).

The variance var[Î(ω)] never decays to 0 as T → ∞, and so Î(ω) is not consistent for

h(ω).

Why? There are too many estimated coeffi cients {γ̂(j)}T−1j=0 ! There is a total of T

estimated coeffi cients, where T is the sample size.

We now offer an alternative explanation why the sample periodogram Î(ω) is not
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consistent for h(ω). Consider the Integrated MSE (IMSE) of Î(ω),

IMSE(Î)

= E

∫ π

−π

∣∣∣Î(ω)− h(ω)
∣∣∣2 dω

= E

∫ π

−π

∣∣∣Î(ω)− EÎ(ω)
∣∣∣2 dω

+

∫ π

−π

∣∣∣EÎ(ω)− h(ω)
∣∣∣2 dω

= E

[
1

2π

T−1∑
j=1−T

(
1− |j|

T

)2
[γ̂(j)− Eγ̂(j)]2

]

+

 1

2π

∑
|j|<T

[(
1− |j|

T

)
Eγ̂(j)− γ(j)

]2
+

1

2π

∑
|j|≥T

γ2(j)

 ,
by orthogonality of exponential bases {eijω}, or the so-called Parseval’s identity.
Note that given E(Xt) = 0,

Eγ̂(j) = T−1
T∑

t=|j|+1

E(XtXt−|j|)

= (1− |j|/T )γ(j),

so we have the squared bias∑
|j|<T

[Eγ̂(j)− γ(j)]2 =
∑
|j|<T

(j/T )2γ2(j)→ 0

if
∑∞

j=−∞ γ
2(j) <∞. For the last term, we also have

∑
|j|>T γ

2(j)→ 0 as T →∞.
For the first term of IMSE(Î), we have

T−1∑
j=1−T

E[γ̂(j)− Eγ̂(j)]2 =

T−1∑
j=1−T

var[γ̂(j)]

= O(1).

because var[γ̂(j)] = CT−1 as T → ∞ under certain regularity conditions (e.g., a mix-

ing condition with a suitable rate), for some C > 0. Therefore, the variance of the

periodogram Î(ω) does not vanish as T →∞.

5.2 Kernel Spectral Estimation

Question: What is a solution to the inconsistency of the sample periodogram Î(ω)?
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In response to the fact that the sample periodogram Î(ω) is not a consistent estimator

for the spectral density h(ω) because it contains “too many”estimated parameters, one

can consider a truncated spectral density estimator,

ĥ(ω) =
1

2π

p∑
j=−p

γ̂(j)e−ijω, ω ∈ [−π, π],

where p is the maximum truncation lag order such that p = p(T ) → ∞, p/T → 0 as

T →∞. Thus, the number p+ 1 of the estimated parameters {γ̂(j)}pj=0 is substantially
smaller than the sample T when T → ∞. As a result, the variance of ĥ(ω) is expected

to vanish to zero as T →∞.

The truncated spectral density estimator was used by Hansen (1980) and White and

Domowitz (1984) to consistently estimate the asymptotic variance-covariance matrix of

econometric estimators (e.g., GMM, OLS) in time series contexts, which is proportional

to the spectral density of certain time series process at frequency zero (see Chapter 3).

However, such an estimator may not be positive semi-definite in finite samples. This

may cause some trouble in applications.

To ensure a positive semi-definite variance-covariance matrix estimator, we can use

a weighted estimator

ĥ(ω) =
1

2π

p∑
j=−p

k(j/p)γ̂(j)e−ijω,

where k(·) is a kernel function for the lag order, and so it is also called a lag window.
An example is the Bartlett kernel ,

k(z) = (1− |z|)1(|z| ≤ 1),

where 1(•) is the indicator function. This is used in Newey and West (1987, 1994).
The Bartlett kernel-based spectral density estimator at frequency zero is always positive

semi-definite (why?). We note that the sample periodogram Î(ω) can be viewed as a

spectral density estimator based on the Bartlett kernel with the choice of the maximum

truncation lag order p = T.

Question: What is the advantage of introducing the kernel function k(·)?

Most kernel functions are downward weighting, i.e., they discount higher order lags. As

a result, they help reduce the variance of ĥ(ω).
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For a weakly stationary process with square-summable autocovariances, serial correlation

decays to zero as lag j increases. This is consistent with the stylized fact that the remote

past events have smaller impacts on the current economic systems and financial markets

than the recent events. Given this, it makes sense to discount higher order lags, namely

to discount remote past events.

More generally, we can consider

ĥ(ω) =
1

2π

T−1∑
j=1−T

k(j/p)γ̂(j)e−ijω, ω ∈ [−π, π],

where k(·) is allowed to have unbounded support, so that all T−1 sample autocovariances

are used in spectral estimation. An example is the Daniell kernel

k(z) =
sin(πz)

πz
, z ∈ R.

As will be seen below, the optimal kernel that minimizes the MSE of the kernel

spectral density estimator ĥ(ω) also has an unbounded support (see the Quadratic-

Spectral kernel below).

When k(·) has an unbounded support, p can no longer be viewed as a maximum lag

truncation order but a smoothing parameter.

We impose the following regularity condition on the kernel function.

Assumption [Kernel Function]: k(·) is a symmetric function that is continuous at all
but a finite number of points, such that (i) |k(z)| ≤ 1, (ii) k(0) = 1,(iii)

∫∞
−∞ k

2(z)dz <∞,
and (iv) there exists a positive real number q such that

0 < kq = lim
z→0

k(0)− k(z)

|z|q <∞.

The quantity kq characterizes the speed at which k(z) converges to k(0) in the neigh-

borhood of 0. For the Bartlett kernel, q = 1. For the Daniell kernel, q = 2.

Question: What is the relationship between the kernel function or lag window k(·) and
the kernel function K(·) used for density and regression estimation?

In terms of mathematical properties, the kernel function or lag window k(·) used for
spectral density estimation is the Fourier transform of a kernel function K(·) used in
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probability density and regression estimation, namely

K(u) =
1

2π

∫ ∞
−∞

k(z)e−izudz,

and

k(z) =

∫ ∞
−∞

K(u)eiuzdu.

When K(u) is a positive kernel (i.e., a symmetric probability density function), k(z)

is the characteristic function of the probability distribution K(u). Thus, it is straight-

forward to understand the conditions imposed on k(z) and K(u) are essentially the

same:

• [Unity Integral]: k(0) = 1 is equivalent to
∫∞
−∞K(u)du = 1;

• [Square-Integratability]:
∫∞
−∞ k

2(z)dz = 2π
∫∞
−∞K

2(u)du <∞;

• [Finite Variance]: For q = 2,

k2 = −1

2
k′′(0) =

1

2

∫ ∞
−∞

u2K(u)du <∞.

• [Symmetry]: The symmetry of k(z) is equivalent to the symmetry of K(u), so∫∞
−∞ uK(u)du = 0.

We now provide some commonly used kernels in practice. They include:

• Truncated kernel
k(z) = 1(|z| ≤ 1).

Its Fourier transform

K(u) =
1

π

sinu

u
, −∞ < u <∞.

• Bartlett kernel
k(z) = (1− |z|)1(|z| ≤ 1).

Its Fourier transform

K(u) =
1

2π

[
sin(u/2)

u/2

]2
, −∞ < u <∞.
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• Daniell kernel
k(z) =

sin(πz)

πz
, −∞ < z <∞.

Its Fourier transform

K(u) =
1

2π
1(|u| ≤ π).

• Parzen kernel

k(z) =


1− 6z2 + 6|z|3 if |z| ≤ 1

2

2(1− |z|)3 if 1
2
< |z| ≤ 1.

0 otherwise.

Its Fourier transform

K(u) =
3

8π

[
sin(u/4)

u/4

]4
, −∞ < u <∞.

• Quadratic-Spectral kernel (i.e., Priestley)

k(z) =
3

(πz)2

[
sin πz

πz
− cos(πz)

]
, −∞ < z <∞.

Its Fourier transform

K(u) =
3

4π
[1− (u/π)2]1(|u| ≤ π).

5.3 Consistency of Kernel Spectral Estimator

Question: Why is the kernel spectral estimator ĥ(ω) consistent for h(ω)?

We consider the integrated MSE criterion

IMSE(ĥ) = E

∫ π

−π

∣∣∣ĥ(ω)− h(ω)
∣∣∣2 dω

= E

∫ π

−π

∣∣∣ĥ(ω)− Eĥ(ω)
∣∣∣2 dω

+

∫ π

−π

∣∣∣Eĥ(ω)− h(ω)
∣∣∣2 dω.

We first consider the bias of ĥ(ω).
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Given E[γ̂(j)] = (1− |j|/T )γ(j), we have

Eĥ(ω)− h(ω) =
1

2π

T−1∑
j=1−T

k(j/p)Eγ̂(j)e−ijω

− 1

2π

∞∑
j=−∞

γ(j)e−ijω

=
1

2π

T−1∑
j=1−T

[(1− |j|/T )k(j/p)− 1]γ(j)e−ijω

− 1

2π

∑
|j|>T−1

γ(j)e−ijω

=
1

2π

T−1∑
j=1−T

[k(j/p)− 1]γ(j)e−ijω

− 1

2πT

T−1∑
j=1−T

k(j/p)|j|γ(j)e−ijω

− 1

2π

∑
|j|>T−1

γ(j)e−ijω

= −p−qkqh(q)(ω) + o(p−q),

where o(p−q) is uniform in ω ∈ [−π, π]. Here, for the first term,

1

2π

T−1∑
j=1−T

[k(j/p)− 1]γ(j)e−ijω

= −p−q 1

2π

T−1∑
j=1−T

{
[1− k(j/p)]

|j/p|q

}
|j|qγ(j)e−ijω

= −p−qkqh(q)(ω)[1 + o(1)]

as p→∞, where kq = limz→0[1− k(z)]/|z|q, and the function

h(q)(ω) =
1

2π

∞∑
j=−∞

|j|qγ(j)e−ijω, ω ∈ [−π, π],

is called the q-th order generalized derivative of h(ω). Note that h(q)(ω) differs from the

usual derivative. When q is even, we have

h(q)(ω) =
1

q!

dq

dωq
h(ω).

Note that a spectral peak will arise when γ(j) decays to zero slowly as the lag order

j →∞.
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Next, we consider the second term of the bias. For the second term, we have

1

2πT

∣∣∣∣∣
T−1∑
j=1−T

k(j/p) |j| γ(j)e−ijω

∣∣∣∣∣ ≤ 1

2πT

T−1∑
j=1−T

|jγ(j)|

= O(T−1)

if
∑∞

j=−∞ |jγ(j)| <∞.
Similarly, for the last term of the bias,∣∣∣∣∣∣

∑
|j|>T

γ(j)e−ijω

∣∣∣∣∣∣ ≤
∑
|j|>T

|γ(j)|

≤ T−1
∑
|j|>T

|jγ(j)|

= o(T−1)

given
∑∞

j=−∞ |jγ(j)| <∞, which implies
∑
|j|>T |jγ(j)| → 0 as T →∞.

Thus, suppose pq/T → 0 such that T−1 = o(p−q), which can be satisfied by choosing

a suitable bandwidth p = p(T )→∞, we have

Eĥ(ω)− h(ω) = −p−qkqh(q)(ω) + o(p−q)

and the squared bias ∫ π

−π

[
Eĥ(ω)− h(ω)

]2
dω

= p−2qk2q

∫ π

−π

[
h(q)(ω)

]2
dω + o(p−2q)

= p−2qk2q
1

2π

∞∑
j=−∞

|j|2qγ2(j) + o(p−2q).

If h(q)(ω) > 0, which can arise when (e.g.) the autocovariance γ(j) is always positive

for all j, then the bias is always negative. In other words, the kernel method always

underestimates a spectral peak.

Unlike nonparametric estimation in time domain or space domain, there is no bound-

ary bias problem, because ĥ(·) is a symmetric periodic function.
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Next, for the integrated variance of ĥ(ω), we have

E[γ̂(j)− Eγ̂(j)]2 = var[γ̂(j)]

=
1

T

[ ∞∑
j=−∞

γ2(j)

]
[1 + o(1)]

=
1

T

∫ π

−π
h2(ω)dω [1 + o(1)] .

Here, we have used the identity (see Priestley, 1981, p.xxx) that for any given lag order

j > 0,

var[γ̂(j)] = T−1
T−j−1∑

m=1−(T−j)

(
1− |m|+ j

T

)[
γ2(m) + γ(m+ j)γ(m− j) + κ4(m, j,m+ j)

]
,

where κ4(i, j, k) is called the fourth order cumulant of the process {Xt}, defined as

κ4(i, j, k) = E(XtXt+iXt+jXt+k)− E(X̃tX̃t+iX̃t+jX̃t+k)

where {X̃t} is a Gaussian process with the same mean and autocovariance function as
{Xt}. It follows that

1

(2π)

T−1∑
j=1−T

k2(j/p)var[γ̂(j)]

=
1

(2π)

T−1∑
j=1−T

k2(j/p)T−1
T−j−1∑

m=1−(T−j)

(
1− |m|+ j

T

)
γ2(m)

+
1

(2π)

T−1∑
j=1−T

k2(j/p)T−1
T−j−1∑

m=1−(T−j)

(
1− |m|+ j

T

)
γ(m+ j)γ(m− j)

+
1

(2π)

T−1∑
j=1−T

k2(j/p)T−1
T−j−1∑

m=1−(T−j)

(
1− |m|+ j

T

)
κ4(m, j,m+ j)

= V̂1 + V̂2 + V̂3, say,

where

V̂1 =
p

T

1

2π

[ ∞∑
m=−∞

γ2(m)

][
1

p

T−1∑
j=1−T

k2(j/p)

]
[1 + o(1)]

=
p

T

∫ π

−π
h2(ω)dω

∫ ∞
−∞

k2(z)dz [1 + o(1)] ,

|V̂2| ≤
1

T

∞∑
j=−∞

|γ(j)|
∞∑

m=−∞
|γ(m)| = O(T−1)
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if
∑∞

j=−∞ |γ(j)| <∞, and finally, for the last term,

|V̂3| ≤
1

T

∞∑
j=−∞

∞∑
l=−∞

∞∑
k=−∞

|κ4(i, j, k)| = O(T−1).

if
∑∞

j=−∞
∑∞

l=−∞
∑∞

k=−∞ |κ4(i, j, k)| <∞.

It follows that the IMSE

IMSE(ĥ) =
p

T

∫ π

−π
h2(ω)dω

∫ ∞
−∞

k2(z)dz

+p−2qk2q

∫ π

−π

[
h(q)(ω)

]2
dω

+o(p/T + p−2q)

=
p

T

1

2π

[ ∞∑
j=−∞

γ2(j)

]∫ ∞
−∞

k2(z)dz

+
1

p2q
k2q

1

2π

∞∑
j=−∞

|j|2qγ2(j)

+o(T−1p+ p−2q)

= O(p/T + p−2q).

Therefore, ĥ(ω) is consistent for h(ω) for any ω ∈ [−π, π] if p → ∞, p/T → 0 as

T →∞. Differentiating the asymptotic IMSE(ĥ), we obtain the optimal bandwidth

p0 =

[
2qk2q∫∞

−∞ k
2(z)dz

∫ π
−π[h(q)(ω)]2dω∫ π
−π h

2(ω)dω

] 1
2q+1

T
1

2q+1

= c0T
1

2q+1 , say.

With this rate for p, the optimal convergence rate for h(ω) is IMSE(ĥ) ∝ T−
2q

2q+1 .

This optimal bandwidth is unknown because the optimal tuning parameter c0 involves

the unknown spectral density h(ω) and its generalized q-order derivative h(q)(ω). Again,

a plug-in or cross-validation method can be used.

It is shown that the optimal kernel is the Quadratic-Spectral kernel

k(z) =
z

(πz)2

[
sin(πz)

πz
− cos(πz)

]
, −∞ < z <∞.

Note that the Fourier transform of the QS kernel is the Epanechnikov kernel

K(u) =
1

4π

[
1−

(u
π

)2]
1(|u| ≤ π).
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The latter is the optimal kernel for kernel density and regression estimation.

Question: Is there any equivalent expression for ĥ(ω) using the Fourier transformK(u)?

Yes, recall the formula

ĥ(ω) =
1

2π

T−1∑
t=1−T

k(j/p)γ̂(j)e−ijω, ω ∈ [−π, π],

and the well-known result that the Fourier transform of the product between γ̂(j) and

k(j/p) is the convolution of their Fourier transforms, we can obtain

ĥ(ω) =
1

2π

T−1∑
j=1−T

k(j/p)γ̂(j)e−ijω

=

∫ π

−π
Î(λ)WT (ω − λ)dλ

=

∫ π

−π
Î(λ)pK[p(ω − λ)]dλ

=

∫ π

−π
Î(λ)

1

h
K

(
ω − λ
h

)
dλ,

where h = p−1 is a bandwdith, Î(λ) is the sample periodogram, namely,

Î(λ) =
1

2πT

∣∣∣∣∣
T∑
t=1

Xte
itλ

∣∣∣∣∣
2

=
1

2π

T−1∑
j=1−T

(
1− |j|

T

)
γ̂(j)e−ijλ,

which is the discrete Fourier transform of γ̂(j), and the weighting function WT (λ) is the

discrete Fourier transform of k(j/p), namely,

WT (λ) =
1

2π

T−1∑
j=−(T−1)

k(j/p)e−ijλ

= p

[
1

2πp

∞∑
j=−∞

k(j/p)e−i(j/p)pλ

]

= p

∞∑
j=−∞

K [p(λ+ 2πj)]

∼ pK(pλ).
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Question: When

p

∞∑
j=−∞

K[p(λ+ 2πj)] = pK(pλ), λ ∈ [−π, π]?

When K(·) has bounded support on [−π, π] and p is large, then the terms with j 6= 0

will all vanish to zero.

Since the periodogram Î(λ) is the discrete Fourier transform of γ̂(j) and the weighting

function WT (λ) is the discrete Fourier transform of k(j/p), the Fourier transform of the

product between γ̂(j) and k(j/p) is the convolution of their Fourier transforms.

The weighting function WT (λ) plays a crucial role of local weighting and smoothing.

We now provide a geometric interpretation of ĥ(ω).Put h = p−1 so that h → 0 as

T →∞. Then

ĥ(ω) =

∫ π

−π
Î(λ)pK[p(ω − λ)]dλ

=

∫ π

−π
Î(λ)

1

h
K

(
ω − λ
h

)
dλ.

Therefore, ĥ(ω) is a smoothed version of the sample periodogram Î(λ) over frequen-

cies in a small neighborhood [ω − πh, ω + πh], if K(·) has a support [−π, π].

Suppose q = 2. Then

Eĥ(ω)− h(ω) = −p−qkqh(q)(ω) + o(p−q).

This can be relatively large when there is a spectral speak at frequency ω. Granger

(1966) points out that the typical spectral shape of most economic time series is that it

has a peak at frequency zero and then decays to zero as frequency increases.

Question: How to reduce the bias of ĥ(ω)?

There are several approaches to reducing the bias of spectral density estimation.

One popular approach is the pre-whitening procedure. Tukey (1957) and Andrews and

Monahan (1992) consider this approach. To describe the basic idea, we consider an AR
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approximation:

Xt =
m∑
j=1

ψjXt−j + ut

= Ψ(L)Xt + ut.

Then the innovation or residual {ut} will have weaker serial dependence. Put

Ψ(L) = 1−
m∑
j=1

ψjL
j.

Then

ut = Ψ(L)Xt

and it follows from Chapter 3 that the spectral density function of ut

hu(ω) = |Ψ(e−iω)|2hX(ω).

Thus, the spectral density of Xt is given by

hX(ω) = |Ψ(e−iω)|−2hu(ω).

In practice, we can first run a prewhitening regression, and obtain the parameter es-

timators {ψ̂j}mj=1. Then use the kernel method to estimate hu(ω) using the prewhitening

residual {ût}. Finally, obtain ĥX(ω) = |Ψ̂(e−iω)|−2ĥu(ω). This is called ”recoloring”. We

note that the spectral density hu(ω) of ut is easier to estimate because it is “flatter”

than the spectral density hX(ω) of Xt.

For the prewhitening procedure, the bias can be reduced substantially but the vari-

ance is increased at the same time. As a result, MSE of ĥX(ω) may be larger than that

without using prewhitening.

Another approach is to use the logarithmic transformation. Put

λk =
2πk

T
for k = 0, ...,

[
T − 1

2

]
.

These are called Fourier frequencies. Then the sample periodogram of {Xt}Tt=1

ÎX(λk) = f(λk)Îε(λ̂) + R̂k,

where

Îε(λk) =
1

2πT

∣∣∣∣∣
T∑
t=1

εte
itλk

∣∣∣∣∣
2
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is the sample periodogram of an innovation sequence {εt}Tt=1, andRk is an asymptotically

negligible term. For 0 < k < [T−1
2

].

A third approach is to use the wavelet approach, which can estimate the spectral peak

more effi ciently than the kernel method. For more discussions, see Härdle, Kerkyachar-

ian, Picard and Tsybakov (1998),Wavelets, Approximation and Statistical Applications,

Lecture Notes in Statistics Volume 129, Hong and Kao (2004, Econometrica), Hong and

Lee (2001, Econometric Theory), and Lee and Hong (2001, Econometric Theory).

Kernel-based estimation for the spectral density function has been widely used in

time series econometrics. The most well-known application is consistent estimation of

the long-run variance-covariance matrix of a time series process (see Chapter 3). Ob-

serving that the long-run variance-covariance matrix is equal to 2π times the spectral

density function at frequency zero, one can consistently estimate the long-run variance-

covariance matrix by estimating the spectral density at frequency zero. Newey and

West (1987, 1994) propose to use the Bartlett kernel to estimate the spectral density.

Andrews (1991) propose a general class of kernel estimators for the long-run variance-

covariance matrix, and show that the Quadratic-Spectral kernel is the optimal kernel

that minimizes the asymptotic mean squared error of the kernel estimator. A key is-

sue for kernel-based estimation of a long-run variance-covariance matrix is the choice of

the smoothing parameter p. Newey and West (1994) and Andrews (1991) propose some

data-driven plug-in methods to select p. In practice, kernel estimators often tend to dis-

play overrejections when used to construct test statistics. This arises particularly when

data displays strong or persistent serial dependence. The main reason is that the kernel-

based estimator tends to underestimate the true long-run variance-covariance matrix,

as the asymptotic bias formula has indicated. Alternative approaches have been pro-

posed, including the high-power kernel estimator (Phillips and Sun 1999), the so-called

fixed b asymptotic method (Kiefer and Vogelsang 2005), and various self-normalization

methods (e.g., Shao 2010, 2015). The basic idea of the self-normalization methods is

to use a normalization factor that avoids choosing a smoothing parameter like p. The

normalization factors are not consistent for the long-run variance-covariance matrix but

are proportional to the long-run variance-covariance matrix up to a stochastic factor,

which lead to a nonstandard asymptotic distribution for the proposed test statistics that

is heavier than the normal distribution. These self-normalization methods can improve

size of the proposed tests in finite sample, but they suffer from some power loss up to
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various degrees, due to the heavy-tailed asymptotic distribution.

Another application of the kernel estimation of the spectral density function is to

test for serial correlation of unknown form. In a time series linear regression model, it

is often of interest to test the null hypothesis that the regression disturbance has no

serial correlation of unknown form. Under the null hypothesis, the regression distur-

bance sequence is a white noise, and its spectral density function is a flat spectrum.

Under the alternative hypothesis that there exists serial correlation, the spectral density

of the disturbance is not flat and can be consistently estimated by the kernel method.

Therefore, one can construct a consistent test for serial correlation of unknown form by

comparing a kernel-based spectral density estimator with the flat spectrum. To compare

the two spectral density estimators under the null and alternative hypotheses, one can

use the squared L2-norm, the squared Hellinger metric, or the Kullback-Leibler informa-

tion criterion. As the sample size T →∞, these distance or divergence measures vanish
to zero under the null hypothesis and converge to nonzero limits under the alternative

hypothesis, giving the tests their asymptotic unit power. Therefore, if these distance or

divergence measures are close to zero, then the null hypothesis holds; if they are not

close to zero, then the alternative hypothesis must be true. How large these distance or

divergence measures should be in order to be considered as significantly large is deter-

mined by their sampling distributions. For more discussion, see Hong (1996) or Chapter

7 for the L2-norm-based test.

6 Conclusion

In this chapter, we have introduced some smoothed nonparametric estimation methods

in both time domain and frequency domain. The functions of interest include but are not

restricted to probability density functions, regression functions, trend functions of time,

time-varying functional coeffi cients, and spectral density functions. Associated with

the first three functions of interest are nonparametric methods in time domain, and

associated with the spectral density estimation are nonparametric methods in frequency

domain.

Nonparametric methods can be divided into two categories: global smoothing and

local smoothing. In this chapter, we consider local smoothing. In particular, we in-

troduce the kernel smoothing methods for density function, regression function and

spectral density functions, and local polynomial smoothing methods for regression func-
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tion, functional coeffi cient models, functional coeffi cient models in a linear or nonlinear

setup. Relationships between these methods are also discussed, including the Fourier

transform relationship between the nonparametric estimation methods in time domain

and frequency domain. Nonparametric methods have been widely applied in economics

and finance.
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EXERCISE 6

6.1. What are the main advantages of nonparametric smoothing methods in time

series econometrics? Why have nonparametric methods become popular in recent years?

6.2. What is the boundary problem for the kernel smoothing method? How can one

alleviate this boundary problem?

6.3. What is the curse of dimensionality associated with nonparametric smoothing?

6.4. Why can the local linear smoother automatically solve for the boundary bias

problem in nonparametric regression estimation?

6.5. Suppose {Xt}Tt=1 is an IID random sample with a twice continuously differen-

tiable marginal density function g(x) on support [a, b]. Define the kernel density estima-

tor

ĝ(x) =
1

T

T∑
t=1

Kh(x−Xt),

where Kh(x−Xt) = h−1K[(x−Xt)/h], K(·) is a positive kernel with support on [−1, 1],

and h = h(T )→ 0 is a bandwidth.

(1) For x ∈ [a+ h, b− h], derive the asymptotic bias expression for Eĝ(x)− g(x).

(2) For x ∈ [a+ h, b− h], derive the asymptotic variance expression for var(ĝ(x)) =

E[ĝ(x)− Eĝ(x)]2.

(3) Find the asymptotic expression for the mean squared error MSE E[ĝ(x)− g(x)]2.

(4) Derive the optimal bandwidth h∗ that maximizes the asymptotic MSE of ĝ(x).

(5) What is the asymptotic MSE when evaluated at the optimal bandwidth h∗.

6.6. Suppose K(·) is a higher order (q-th order) kernel such that
∫ 1
−1K(u)du =

1,
∫ 1
−1 u

jK(u)du = 0 for 1 ≤ j ≤ q − 1,
∫ 1
−1 u

qK(u)du = CK(q) and
∫ 1
−1K

2(u)du = DK .

In addition, assume that g(x) is q-time continuously differentiable on [a, b]. Answer (1)—

(5) in Exercise 6.5 again.

6.7. In the setup of Exercise 6.5, further assume g(x) ≥ ε > 0 for some constant

ε > 0. Consider the asymptotic bias of ĝ(x) for x = a+ ρh ∈ [a, a+ h] for ρ ∈ [0, 1).

(1) Show that supx∈[a,a+h] |Eĝ(x)− g(x)| never vanishes to zero as h→∞.
(2) There are several approaches to deal with the boundary bias problem in (1). One

simple way is to consider the following kernel estimator

ĝ(x) =
1

T

T∑
t=1

Kh(x,Xt),
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where

Kh(x, y) ≡


h−1K

(
x−y
h

)
/
∫ 1
−(x/h)K(u)du, if x ∈ [0, h),

h−1K
(
x−y
h

)
, if x ∈ [h, 1− h],

h−1K
(
x−y
h

)
/
∫ (1−x)/h
−1 K(u)du, if x ∈ (1− h, 1]

and K(·) is a standard kernel. This estimator differs from the estimator in Exercise 6.5

in the boundary regions but not in the interior regions. Show that supx∈[a,a+h) |Eĝ(x)−
g(x)| → 0 as h→ 0.

6.8. One method to deal with the boundary bias problem of kernel estimation is to

use the so-called reflection method. This method constructs the kernel density estimate

based on the “reflected”data {−Xt}Tt=1 and the original data {Xt}Tt=1. Suppose Xt has

a twice-continuously differentiable marginal pdf g(x) with the support [a, b], and x is a

left boundary point in [a, a+h) and x ≥ 0. Then the reflection method uses an estimator

ĝ(x) =
1

T

T∑
t=1

Kh(x−Xt) +
1

T

T∑
t=1

Kh[x− (−(Xt − a))],

where Kh(x −Xt) = h−1K[(x −Xt)/h], K : [−1, 1] → R+ is a pre-specified symmetric

pdf with support [−1, 1] and h is the bandwidth. Find the bias Eĝ(x) − g(x) for the

following cases:

(1) x ∈ [a, a+ h);

(2) x ∈ [ah, b− h].

6.9. Suppose a second order kernel K : [−1, 1] → R is symmetric about zero,∫ 1
−1 u

2K(u) = CK <∞,
∫ 1
−1K

2(u)du = DK <∞, but
∫ 1
−1K(u)du 6= 1.

(1) Derive the bias of the Nadaraya-Watson estimator for r(x), where x is a given

point in the interior region.

(2) Derive the bias of the Nadaraya-Watson estimator when x is in the boundary

region.

For both (1) and (2), explain the results you obtained and compare them to the

results obtained under the condition that
∫ 1
−1K(u)du = 1.

6.10. Suppose a data generating process is given by

Yt = 1 +Xt − 0.25X2
t + εt, t = 1, ..., T,

where {Xt} ∼ IID U [0, 2
√

3], {εt} ∼ IID N(0, 1), and {Xt} and {εt} are mutually
independent.
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(1) Generate a data {Yt, Xt}Tt=1 with T = 200 using a random number generator on

a computer, and plot the sample point on the xy-plane, and plot the true regression

function r(x) = E(Yt|Xt = x).

(2) Use a Nadaraya-Watson estimator to estimate the regression function r(Xt) =

E(Yt|Xt) on 100 equally spaced grid points on [0, 2
√

3]. Use the quatic kernel K(u) =
15
16

(1 − |u|2)21(|u| ≤ 1) and choose the bandwidth h = SXT
− 1
5 , where SX is the sample

standard deviation of {Xt}Tt=1. Plot the estimator r̂(x) on the xy-plane.

(3) Use a local linear estimator to estimate the regression function r(x) on 100 equally

spaced grid points on [0, 2
√

3], with the same kernel K(·) and bandwidth h as in part
(2). Plot the estimator for r(x) on the xy-plane.

6.11. Again, in the setup of Exercise 6.5, further assume g(x) ≥ ε > 0 for some

constant ε > 0. Consider the asymptotic bias of ĝ(x) for x = a + ρh ∈ [a, a + h] for

ρ ∈ [0, 1). Another method to deal with the boundary bias problem is to use the so-called

jackknife kernel method.

(1) For x = a+ ρh ∈ [a, a+ h), we consider an estimator

ḡ(x) = ĝ(x;h) + β [ĝ(x;h)− ĝ(x;αh)] ,

where

ĝ(x;h) =
1

T

T∑
t=1

h−1Kρ

(
x−Xt

h

)
,

Kρ(u) ≡ K(u)

ωK(0, ρ)
,

and ωK(i, ρ) =
∫ 1
−ρ u

iK(u)du for i = 0, 1, 2.

Now define a new kernel (called jackknife kernel)

KJ
ρ (u) = (1 + β)Kρ(u)− β

α
K ρ

α
(
u

α
)

where β is the same as in ḡ(x). Show that

ḡ(x) =
1

T

T∑
t=1

h−1KJ
ρ

(
x−Xt

h

)
.

(2) Find the expression for β in terms of ωK(·, ρ) and α such that supx∈[a,a+h) |Eḡ(x)−
g(x)| = O(h2).
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(3) Suppose now x = b − ρh ∈ (b − h, b]. Can we use ḡ(x) and get an asymptotic

bias of order O(h2). If yes, verify it; if not, derive an estimator so that you can obtain

an O(h2) bias for x ∈ (b− h, b].

6.12. Suppose {Xt}Tt=1 is an IID random sample with a twice continuously dif-

ferentiable marginal density function g(x) on support [a, b]. Define the kernel density

estimator

ĝ(x) =
1

T

T∑
t=1

Kh(x−Xt),

where Kh(x−Xt) = h−1K[(x−Xt)/h], K(·) is a standard kernel (usually called second
order kernel or positive kernel) with support on [−1, 1] such that , and h = h(T )→ 0 is

a bandwidth.

(1) For x ∈ [a+ h, b− h], derive the asymptotic bias expression for E[ĝ(x)]− g(x).

(2) For x ∈ [a + h, b − h], derive the asymptotic variance expression for var[ĝ(x)] =

E {ĝ(x)− E[ĝ(x)]}2 .
(3) Find the asymptotic expression for the mean squared error MSE E[ĝ(x)− g(x)]2.

(4) Derive the optimal bandwidth h∗ that maximizes the asymptotic MSE of ĝ(x).

(5) What is the asymptotic MSE when evaluated at the optimal bandwidth h∗.

6.13. Suppose K(·) is a higher order (q-th order) kernel such that
∫ 1
−1K(u)du =

1,
∫ 1
−1 u

jK(u)du = 0 for 1 ≤ j ≤ q − 1,
∫ 1
−1 u

qK(u)du = CK(q) and
∫ 1
−1K

2(u)du = DK .

In addition, assume that g(x) is q-time continuously differentiable on [a, b]. Answer (1)—

(5) in Exercise 6.12 again.

6.14. In the setup of Exercise 6.12, further assume g(x) ≥ ε > 0 for some constant

ε > 0. Consider the asymptotic bias of ĝ(x) for x = a+ ρh ∈ [a, a+ h] for ρ ∈ [0, 1).

(1) Show that supx∈[a,a+h] |Eĝ(x)− g(x)| never vanishes to zero as h→∞.
(2) There are several approaches to deal with the boundary bias problem in (1). One

simple way is to consider the following kernel estimator

ĝ(x) =
1

T

T∑
t=1

Kh(x,Xt),

where

Kh(x, y) ≡


h−1K

(
x−y
h

)
/
∫ 1
−(x/h)K(u)du, if x ∈ [0, h),

h−1K
(
x−y
h

)
, if x ∈ [h, 1− h],

h−1K
(
x−y
h

)
/
∫ (1−x)/h
−1 K(u)du, if x ∈ (1− h, 1]
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and K(·) is a standard kernel. This estimator differs from the estimator in Exercise 6.12
in the boundary regions but not in the interior regions. Show that supx∈[a,a+h) |E[ĝ(x)]−
g(x)| → 0 as h→ 0.

6.15. One method to deal with the boundary bias problem of kernel estimation is

the so-called reflection method. This method constructs the kernel density estimate

based on the “reflected”data {−Xt}Tt=1 and the original data {Xt}Tt=1. Suppose Xt has

a twice-continuously differentiable marginal pdf g(x) with the support [a, b], and x is a

left boundary point in [a, a+h) and x ≥ 0. Then the reflection method uses an estimator

ĝ(x) =
1

T

T∑
t=1

Kh(x−Xt) +
1

T

T∑
t=1

Kh[x− (−(Xt − a))],

where Kh(x −Xt) = h−1K[(x −Xt)/h], K : [−1, 1] → R+ is a pre-specified symmetric

pdf with support [−1, 1] and h is the bandwidth. Find the bias Eĝ(x) − g(x) for the

following two cases:

(1) x ∈ [a, a+ h);

(2) x ∈ [ah, b− h].

6.16. Suppose a data generating process is given by

Yt = 1 +Xt − 0.25X2
t + εt, t = 1, ..., T,

where {Xt} ∼ IID U [0, 2
√

3], {εt} ∼ IID N(0, 1), and {Xt} and {εt} are mutually
independent.

(1) Generate a data {Yt, Xt}Tt=1 with T = 200 using a random number generator on

a computer, and plot the sample point on the xy-plane, and plot the true regression

function r(x) = E(Yt|Xt = x).

(2) Use a Nadaraya-Watson estimator to estimate the regression function r(Xt) =

E(Yt|Xt) on 100 equally spaced grid points on [0, 2
√

3]. Use the quartic kernel K(u) =
15
16

(1 − |u|2)21(|u| ≤ 1) and choose the bandwidth h = SXT
− 1
5 , where SX is the sample

standard deviation of {Xt}Tt=1. Plot the estimator r̂(x) on the xy-plane.

(3) Use a local linear estimator to estimate the regression function r(x) on 100 equally

spaced grid points on [0, 2
√

3], with the same kernel K(·) and bandwidth h as in part
(2). Plot the estimator for r(x) on the xy-plane.

6.17. Again, in the setup of Exercise 6.12, further assume g(x) ≥ ε > 0 for some

constant ε > 0. Consider the asymptotic bias of ĝ(x) for x = a + ρh ∈ [a, a + h] for
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ρ ∈ [0, 1). Another method to deal with the boundary bias problem is to use the so-called

jackknife kernel method.

(1) For x = a + ρh ∈ [a, a + h), we consider ḡ(x) = ĝ(x;h) + β [ĝ(x;h)− ĝ(x;αh)] ,

where

ĝ(x;h) =
1

T

T∑
t=1

h−1Kρ

(
x−Xt

h

)
,

Kρ(u) ≡ K(u)

ωK(0, ρ)
,

and ωK(i, ρ) =
∫ 1
−ρ u

iK(u)du for i = 0, 1, 2.

Now, define a new kernel (called jackknife kernel)

KJ
ρ (u) = (1 + β)Kρ(u)− β

α
K ρ

α
(
u

α
)

where β is the same as in ḡ(x). Show that

ḡ(x) =
1

T

T∑
t=1

h−1KJ
ρ

(
x−Xt

h

)
.

(2) Find the expression for β in terms of ωK(·, ρ) and α such that supx∈[a,a+h) |E[ḡ(x)]−
g(x)| = O(h2).

(3) Suppose now x = b − ρh ∈ (b − h, b]. Can we use ḡ(x) and get an asymptotic

bias of order O(h2). If yes, verify it; if not, derive an estimator so that you can obtain

an O(h2) bias for x ∈ (b− h, b].

6.18. Derive the asymptotic MSE formula for the local polynomial time-trend esti-

mator m̂(t0/T ) for t0 in the boundary region [1, Th) or (T − Th, T ].

6.19. Derive the asymptotic distribution for the local polynomial time-trend estima-

tor m̂(t0/T ) for t0 in the boundary region [1, Th) or (T − Th, T ].

6.20. Derive the asymptotic MSE formula for the local polynomial estimator α̂(t0/T )

in the locally linear regression model, where t0 is in the interior region [Th, T − Th].

6.21. Derive the asymptotic MSE formula for the local polynomial estimator α̂(t0/T )

in a locally linear time-varying regression model, where t0 is in the boundary region

region [1, Th) or (T − Th, T ].
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6.22. Suppose {Xt} is a sixth-order stationary time series process. Define a kernel-
based bispectral density estimator

b̂(ω1, ω2) =
1

(2π)2

T−1∑
j=1−T

T−1∑
l=1−T

k(j/p)k(l/p)k[(j − l)/p]Ĉ(0, j, l)eijω1+ilω2 .

(1) If k2 = lim 1−k(z)
|z|2 ∈ (0,∞), then show the bias

E
[
b̂(ω1, ω2)

]
− b(ω1, ω2) = −1

2

k2
p2
D(2)(ω1, ω2)[1 + o(1)],

where

D2(ω1, ω2) =

(
∂2

∂ω21
− ∂2

∂ω1∂ω2
+

∂2

∂ω22

)
b(ω1, ω2).

See Subba Rao and Gabr (1984) for the derivation of the bias.

(2) Show

var
[
b̂(ω1, ω2)

]
=
p2

T

V

2π
h(ω1)h(ω2)h(ω1 + ω2) [1 + o(1)] ,

where

V =

∫ ∞
−∞

∫ ∞
−∞

k2(u)k2(v)k2(u− v)dudv.

See Brillinger and Rosenblatt (1967a) for the derivation of the variance of the bispectral

density estimator.

(3) Obtain the conditions on bandwidth p = p(T ) so that b̂(ω1, ω2) is consistent for

b(ω1, ω2) as the sample size T →∞.

6.23. Suppose {Xt} is a strictly stationary time series. Define a generalized spectral
density estimator

f̂(ω, u, v) =
1

2π

T−1∑
j=1−T

(1− |j|/T )1/2k(j/p)σ̂j(u, v)e−ijω,

where

σ̂j(u, v) = ϕ̂j(u, v)− ϕ̂j(u, 0)ϕ̂j(0, v),

and

ϕ̂j(u, v) = (T − |j|)−1
T∑

t=|j|+1

eiuXt+ivXt−|j|

is the empirical characteristic function of (Xt, Xt−|j|).
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(1) Suppose 0 < kq < ∞, where kq = [1 − k(z)]/|z|q. Derive the asymptotic bias of
f̂(ω, u, v).

(2) Derive the asymptotic variance of f̂(ω, u, v).

(3) Derive the conditions on the smoothing parameter p so that f̂(ω, u, v) is consistent

for f(ω, u, v).

(4) Derive the optimal smoothing parameter p0 that minimizes the integrated MSE

of f̂(ω, u, v).
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